
ASDF Standard
Release 1.6.0

The ASDF Developers

Feb 23, 2022

CONTENTS

1 Introduction 3

2 Low-level file layout 5

3 The tree in-depth 11

4 Versioning Conventions 17

5 ASDF Schemas 19

6 ASDF Schema Definitions 29

7 Known limits 93

8 Changes 95

9 Appendix A: Embedding ASDF in FITS 97

Bibliography 101

i

ii

ASDF Standard, Release 1.6.0

This document describes the Advanced Scientific Data Format (ASDF), pronounced AZ-diff.

CONTENTS 1

ASDF Standard, Release 1.6.0

2 CONTENTS

CHAPTER 1

INTRODUCTION

The Flexible Image Transport System (FITS) has been the de facto standard for storing and exchanging astronomical
data for decades, but it is beginning to show its age. Developed in the late 1970s, the FITS authors made a number
of implementation choices that, while common at the time, are now seen to limit its utility for the needs of modern
science. As astronomy moves into a more varied set of data product types (data models) with richer and more
complex metadata, FITS is being pushed to its breaking point. The issues with FITS are outlined in great detail in
[Thomas2015].

Newer formats, such as VOTable (http://www.ivoa.net/documents/VOTable/) have partially addressed the problem
of richer, more structured metadata, by using tree structures rather than flat key/value pairs. However, those
text-based formats are unsuitable for storing large amounts of binary data. On the other end of the spectrum,
formats such as HDF5 (http://www.hdfgroup.org/HDF5/) and BLZ (http://blaze.pydata.org/) address problems
with large data sets and distributed computing, but don’t really address the metadata needs of an interchange
format. ASDF aims to exist in the same middle ground that made FITS so successful, by being a hybrid text and
binary format: containing human editable metadata for interchange, and raw binary data that is fast to load and
use. Unlike FITS, the metadata is highly structured and is designed up-front for extensibility.

ASDF has the following explicit goals:

• It has a hierarchical metadata structure, made up of basic dynamic data types such as strings, numbers, lists
and mappings.

• It has human-readable metadata that can be edited directly in place in the file.

• The structure of the data can be automatically validated using schema.

• It’s designed for extensibility: new conventions may be used without breaking backward compatibility with
tools that do not understand those conventions. Versioning systems are used to prevent conflicting with
alternative conventions.

• The binary array data (when compression is not used) is a raw memory dump, and techniques such as
memory mapping can be used to efficiently access it.

• It is possible to read and write the file in as a stream, without requiring random access.

• It’s built on top of industry standards, such as YAML (http://www.yaml.org) and JSON Schema
(http://www.json-schema.org) to take advantage of a larger community working on the core problems

3

http://www.ivoa.net/documents/VOTable/
http://www.hdfgroup.org/HDF5/
http://blaze.pydata.org/
http://www.yaml.org
http://www.json-schema.org

ASDF Standard, Release 1.6.0

of data representation. This also makes it easier to support ASDF in new programming languages and
environments by building on top of existing libraries.

• Since every ASDF file has the version of the specification to which it is written, it will be possible, through
careful planning, to evolve the ASDF format over time, allowing for files that use new features while retaining
backward compatibility with older tools.

ASDF is primarily intended as an interchange format for delivering products from instruments to scientists or
between scientists. While it is reasonably efficient to work with and transfer, it may not be optimal for direct use
on large data sets in distributed and high performance computing environments. That is explicitly not a goal of
the ASDF standard, as those requirements can sometimes be at odds with the needs of an interchange format.
ASDF still has a place in those environments as a delivery mechanism, even if it ultimately is not the actual format
on which the computing is performed.

1.1 Implementations

The ASDF standard is being developed concurrently with a reference implementation written in Python
(http://github.com/spacetelescope/asdf).

There are two prototype implementations for C++: asdf-cpp (https://github.com/spacetelescope/asdf-cpp) and
asdf-cxx (https://github.com/eschnett/asdf-cxx). Neither is currently feature complete, but both provide enough
functionality to read and write ASDF files.

There is also a work-in-progress wrapper (https://github.com/eschnett/asdf.jl) of the Python implementation for
Julia (https://julialang.org).

1.2 Incorporated standards

The ASDF format is built on top of a number of existing standards:

• YAML 1.1 (http://yaml.org/spec/1.1/)

• JSON Schema Draft 4:

– Core (http://tools.ietf.org/html/draft-zyp-json-schema-04)

– Validation (http://tools.ietf.org/html/draft-fge-json-schema-validation-00)

– Hyper-Schema (http://tools.ietf.org/html/draft-luff-json-hyper-schema-00)

• JSON Pointer (http://tools.ietf.org/html/rfc6901)

• Semantic Versioning 2.0.0 (http://semver.org/spec/v2.0.0.html)

• VOUnits (Units in the VO) (http://www.ivoa.net/documents/VOUnits/index.html)

• Zlib Deflate compression (http://www.zlib.net/feldspar.html)

4 Chapter 1. Introduction

http://github.com/spacetelescope/asdf
https://github.com/spacetelescope/asdf-cpp
https://github.com/eschnett/asdf-cxx
https://github.com/eschnett/asdf.jl
https://julialang.org
http://yaml.org/spec/1.1/
http://tools.ietf.org/html/draft-zyp-json-schema-04
http://tools.ietf.org/html/draft-fge-json-schema-validation-00
http://tools.ietf.org/html/draft-luff-json-hyper-schema-00
http://tools.ietf.org/html/rfc6901
http://semver.org/spec/v2.0.0.html
http://www.ivoa.net/documents/VOUnits/index.html
http://www.zlib.net/feldspar.html

CHAPTER 2

LOW-LEVEL FILE LAYOUT

The overall structure of a file is as follows (in order):

• Header (page 6)

• Comments (page 6), optional

• Tree (page 6), optional

• Zero or more Blocks (page 7)

• Block index (page 9), optional

ASDF is a hybrid text and binary format. The header, tree and block index are text, (specifically, in UTF-8 with
DOS or UNIX-style newlines), while the blocks are raw binary.

The low-level file layout is designed in such a way that the tree section can be edited by hand, possibly changing
its size, without requiring changes in other parts of the file. While such an operation may invalidate the Block
index (page 9), the format is designed so that if the block index is removed or invalid, it may be regenerated by
“skipping along” the blocks in the file.

The same is not true for resizing a block, which has an explicit size stored in the block header (except for, optionally,
the last block).

Note also that, by design, an ASDF file containing no binary blocks is also a completely standard and valid YAML
file.

Additionally, the spec allows for extra unallocated space after the tree and between blocks. This allows libraries to
more easily update the files in place, since it allows expansion of certain areas without rewriting of the entire file.

5

ASDF Standard, Release 1.6.0

2.1 Header

All ASDF files must start with a short one-line header. For example:

#ASDF 1.0.0

It is made up of two parts, separated by white space characters:

• ASDF token: The constant string #ASDF. This can be used to quickly identify the file as an ASDF file by
reading the first 5 bytes. It begins with a # so it will be treated as a YAML comment such that the Header
(page 6) and the Tree (page 6) together form a valid YAML file.

• File format version: The version of the low-level file format that this file was written with. This version
may differ from the version of the ASDF specification, and is only updated when a change is made that
affects the layout of file. It follows the Semantic Versioning 2.0.0 (http://semver.org/spec/v2.0.0.html)
specification. See Versioning Conventions (page 17) for more information about these versions.

The header in EBNF form:

asdf_token = "#ASDF"
header = asdf_token " " format_version ["\r"] "\n"

2.2 Comments

Additional comment lines may appear between the Header and the Tree.

The use of comments here is intended for information for the ASDF parser, and not information of general interest
to the end user. All data of interest to the end user should be in the Tree.

Each line must begin with a # character.

2.3 Tree

The tree stores structured information using a subset of YAML Ain’t Markup Language (YAML™) 1.1
(http://yaml.org/spec/1.1/) syntax (see YAML subset (page 11) for details on YAML features that are excluded
from ASDF). While it is the main part of most ASDF files, it is entirely optional, and a ASDF file may skip it
completely. This is useful for creating files in Exploded form (page 10). Interpreting the contents of this section is
described in greater detail in The tree in-depth (page 11). This section only deals with the serialized representation
of the tree, not its logical contents.

The tree is always encoded in UTF-8, without an explicit byteorder marker (BOM). Newlines in the tree may be
either DOS ("\r\n") or UNIX ("\n") format.

In ASDF 1.6.0, the tree must be encoded in YAML version 1.1 (http://yaml.org/spec/1.1/). At the time of this
writing, the latest version of the YAML specification is 1.2, however most YAML parsers only support YAML 1.1,
and the benefits of YAML 1.2 are minor. Therefore, for maximum portability, ASDF requires that the YAML is
encoded in YAML 1.1. To declare that YAML 1.1 is being used, the tree must begin with the following line:

%YAML 1.1

The tree must contain exactly one YAML document, starting with --- (YAML document start marker) and ending
with ... (YAML document end marker), each on their own line. Between these two markers is the YAML content.
For example:

6 Chapter 2. Low-level file layout

http://semver.org/spec/v2.0.0.html
http://yaml.org/spec/1.1/
http://yaml.org/spec/1.1/

ASDF Standard, Release 1.6.0

%YAML 1.1
%TAG ! tag:stsci.edu:asdf/
--- !core/asdf-1.0.0
data: !core/ndarray-1.0.0
source: 0
datatype: float64
shape: [1024, 1024]

...

The size of the tree is not explicitly specified in the file, so that it can easily be edited by hand. Therefore, ASDF
parsers must search for the end of the tree by looking for the end-of-document marker (...) on its own line. For
example, the following regular expression may be used to find the end of the tree:

\r?\n...\r?\n

Though not required, the tree should be followed by some unused space to allow for the tree to be updated and
increased in size without performing an insertion operation in the file. It also may be desirable to align the start
of the first block to a filesystem block boundary. This empty space may be filled with any content (as long as it
doesn’t contain the block_magic_token described in Blocks (page 7)). It is recommended that the content is made
up of space characters (0x20) so it appears as empty space when viewing the file.

2.4 Blocks

Following the tree and some empty space, or immediately following the header, there are zero or more binary
blocks.

Blocks represent a contiguous chunk of binary data and nothing more. Information about how to interpret the
block, such as the data type or array shape, is stored entirely in ndarray structures in the tree, as described
in ndarray (page 34). This allows for a very flexible type system on top of a very simple approach to memory
management within the file. It also allows for new extensions to ASDF that might interpret the raw binary data in
ways that are yet to be defined.

There may be an arbitrary amount of unused space between the end of the tree and the first block. To find the
beginning of the first block, ASDF parsers should search from the end of the tree for the first occurrence of the
block_magic_token. If the file contains no tree, the first block must begin immediately after the header with no
padding.

2.4.1 Block header

Each block begins with the following header:

• block_magic_token (4 bytes): Indicates the start of the block. This allows the file to contain some unused
space in which to grow the tree, and to perform consistency checks when jumping from one block to the
next. It is made up of the following 4 8-bit characters:

– in hexadecimal: d3, 42, 4c, 4b

– in ascii: "\323BLK"

• header_size (16-bit unsigned integer, big-endian): Indicates the size of the remainder of the header (not
including the length of the header_size entry itself or the block_magic_token), in bytes. It is stored
explicitly in the header itself so that the header may be enlarged in a future version of the ASDF standard
while retaining backward compatibility. Importantly, ASDF parsers should not assume a fixed size of the

2.4. Blocks 7

ASDF Standard, Release 1.6.0

header, but should obey the header_size defined in the file. In ASDF version 0.1, this should be at least 48,
but may be larger, for example to align the beginning of the block content with a file system block boundary.

• flags (32-bit unsigned integer, big-endian): A bit field containing flags (described below).

• compression (4-byte byte string): The name of the compression algorithm, if any. Should be \0\0\0\0 to
indicate no compression. See Compression (page 8) for valid values.

• allocated_size (64-bit unsigned integer, big-endian): The amount of space allocated for the block (not
including the header), in bytes.

• used_size (64-bit unsigned integer, big-endian): The amount of used space for the block on disk (not
including the header), in bytes.

• data_size (64-bit unsigned integer, big-endian): The size of the block when decoded, in bytes. If
compression is all zeros (indicating no compression), it must be equal to used_size. If compression
is being used, this is the size of the decoded block data.

• checksum (16-byte string): An optional MD5 checksum of the used data in the block. The special value of
all zeros indicates that no checksum verification should be performed.

2.4.2 Flags

The following bit flags are understood in the flags field:

• STREAMED (0x1): When set, the block is in streaming mode, and it extends to the end of the file. When
set, the allocated_size, used_size and data_size fields are ignored. By necessity, any block with the
STREAMED bit set must be the last block in the file.

2.4.3 Compression

Currently, two block compression types are supported:

• zlib: The zlib lossless compression algorithm. It is widely used, patent-unencumbered, and has an imple-
mentation released under a permissive license in zlib (http://www.zlib.net/).

• bzp2: The bzip2 lossless compression algorithm. It is widely used, assumed to be patent-unencumbered,
and has an implementation released under a permissive license in the bzip2 library (http://www.bzip.org/).

2.4.4 Block content

Immediately following the block header, there are exactly used_space bytes of meaningful data, followed by
allocated_space - used_space bytes of unused data. The exact content of the unused data is not enforced.
The ability to have gaps of unused space allows an ASDF writer to reduce the number of disk operations when
updating the file.

8 Chapter 2. Low-level file layout

http://www.zlib.net/
http://www.bzip.org/

ASDF Standard, Release 1.6.0

2.5 Block index

The block index allows for fast random access to each of the blocks in the file. It is completely optional: if not
present, libraries may “skip along” the block headers to find the location of each block in the file. Libraries should
detect invalid or obsolete block indices and ignore them and regenerate the index by skipping along the block
headers.

The block index appears at the end of the file to make streaming an ASDF file possible without needing to determine
the size of all blocks up front, which is non-trivial in the case of compression. It also allows for updating the index
without an expensive insertion operation earlier in the file.

The block index must appear immediately after the allocated space for the last block in the file. If the last block is
a streaming block, no block index may be present – the streaming block feature and block index are incompatible.

If no blocks are present in the file, the block index must also be absent.

The block index consists of a header, followed by a YAML document containing the indices of each block in the file.

The header must be exactly:

#ASDF BLOCK INDEX

followed by a DOS or UNIX newline.

Following the header is a YAML document (in YAML version 1.1, like the Tree (page 6)), containing a list of integers
indicating the byte offset of each block in the file.

The following is an example block index:

#ASDF BLOCK INDEX
%YAML 1.1
--- [2043, 16340]
...

The offsets in the block index must be monotonically increasing, and must, by definition, be at least “block header
size” apart. If they were allowed to appear in any order, it would be impossible to rebuild the index by skipping
blocks were the index to become damaged or out-of-sync.

Additional zero-valued bytes may appear after the block index. This is mainly to support operating systems, such
as Microsoft Windows, where truncating the file may not be easily possible.

2.5.1 Implementation recommendations

Libraries should look for the block index by reading backward from the end of the file.

Libraries should be conservative about what is an acceptable index, since addressing incorrect parts of the file
could result in undefined behavior.

The following checks are recommended:

• Always ensure that the first offset entry matches the location of the first block in the file. This will catch
the common use case where the YAML tree was edited by hand without updating the index. If they do not
match, do not use the entire block index.

• Ensure that the last entry in the index refers to a block magic token, and that the end of the allocated space
in the last block is immediately followed by the block index. If they do not match, do not use the entire
block index.

2.5. Block index 9

ASDF Standard, Release 1.6.0

• When using an offset in the block index, always ensure that the block magic token exists at that offset before
reading data.

2.6 Exploded form

Exploded form expands a self-contained ASDF file into multiple files:

• An ASDF file containing only the header and tree, which by design is also a valid YAML file.

• n ASDF files, each containing a single block.

Exploded form is useful in the following scenarios:

• Not all text editors may handle the hybrid text and binary nature of the ASDF file, and therefore either can’t
open an ASDF file or would break an ASDF file upon saving. In this scenario, a user may explode the ASDF
file, edit the YAML portion as a pure YAML file, and implode the parts back together.

• Over a network protocol, such as HTTP, a client may only need to access some of the blocks. While reading a
subset of the file can be done using HTTP Range headers, not all web servers support this HTTP feature.
Exploded form allows each block to be requested directly by a specific URI.

• An ASDF writer may stream a table to disk, when the size of the table is not known at the outset. Using
exploded form simplifies this, since a standalone file containing a single table can be iteratively appended to
without worrying about any blocks that may follow it.

Exploded form describes a convention for storing ASDF file content in multiple files, but it does not require any
additions to the file format itself. There is nothing indicating that an ASDF file is in exploded form, other than
the fact that some or all of its blocks come from external files. The exact way in which a file is exploded is up to
the library and tools implementing the standard. In the simplest scenario, to explode a file, each ndarray source
property (page 34) in the tree is converted from a local block reference into a relative URI.

10 Chapter 2. Low-level file layout

CHAPTER 3

THE TREE IN-DEPTH

The ASDF tree, being encoded in YAML, is built out of the basic structures common to most dynamic languages:
mappings (dictionaries), sequences (lists), and scalars (strings, integers, floating-point numbers, booleans, etc.).
All of this comes “for free” by using YAML (http://yaml.org/spec/1.1/).

Since these core data structures on their own are so flexible, the ASDF standard includes a number of schema that
define the structure of higher-level content. For instance, there is a schema that defines how n-dimensional array
data (page 34) should be described. These schema are written in a language called YAML Schema (page 81) which
is just a thin extension of JSON Schema, Draft 4 (http://json-schema.org/latest/json-schema-validation.html).
(Such extensions are allowed and even encouraged by the JSON Schema standard, which defines the $schema
attribute as a place to specify which extension is being used.) ASDF Schemas (page 19) contains an overview
of how schemas are defined and used by ASDF. ASDF Schema Definitions (page 29) describes in detail all of the
schemas provided by the ASDF Standard. reference to all of schemas in detail.

3.1 YAML subset

For reasons of portability, some features of YAML 1.1 are not permitted in an ASDF tree.

3.1.1 Restricted mapping keys

YAML itself places no restrictions on the object type used as a mapping key; floats, sequences, even mappings
themselves can serve as a key. For example, the following is a perfectly valid YAML document:

%YAML 1.1

{foo: bar}:

3.14159: baz
[1, 2, 3]: qux

...

However, such a file may not be easily parsed in all languages. Python, for example, does not include a hashable
mapping type, so the two major Python YAML libraries both fail to construct the object described by this document.

11

http://yaml.org/spec/1.1/
http://json-schema.org/latest/json-schema-validation.html

ASDF Standard, Release 1.6.0

Floating-point keys are described as “not recommended” in the YAML 1.1 spec because YAML does not specify an
accuracy for floats.

For these reasons, mapping keys in ASDF trees are restricted to the following scalar types:

• bool

• int

• str

3.2 Tags

YAML includes the ability to assign Tags (page 12) (or types) to any object in the tree. This is an important feature
that sets it apart from other data representation languages, such as JSON. ASDF defines a number of custom tags,
each of which has a corresponding schema. For example the tag of the root element of the tree must always be
tag:stsci.edu:asdf/core/asdf-1.1.0, which corresponds to the asdf schema (page 29) –in other words, the
top level schema for ASDF trees. A validating ASDF reader would encounter the tag when reading in the file, load
the corresponding schema, and validate the content against it. An ASDF library may also use this information to
convert to a native data type that presents a more convenient interface to the user than the structure of basic types
stored in the YAML content.

For example:

%YAML 1.1
--- !<tag:stsci.edu:asdf/core/asdf-1.1.0>
data: !<tag:stsci.edu:asdf/core/ndarray-1.0.0>
source: 0
datatype: float64
shape: [1024, 1024]
byteorder: little

...

All tags defined in the ASDF standard itself begin with the prefix tag:stsci.edu:asdf/. This can be broken down
as:

• tag: The standard prefix used for all YAML tags.

• stsci.edu The owner of the tag.

• asdf The name of the standard.

Following that is the “module” containing the schema (see ASDF Schema Definitions (page 29) for a list of the
available modules). Lastly is the tag name itself, for example, asdf or ndarray. Since it is cumbersome to type out
these long prefixes for every tag, it is recommended that ASDF files declare a prefix at the top of the YAML file and
use it throughout. (Most standard YAML writing libraries have facilities to do this automatically.) For example, the
following example is equivalent to the above example, but is more user-friendly. The %TAG declaration declares
that the exclamation point (!) will be replaced with the prefix tag:stsci.edu:asdf/:

%YAML 1.1
%TAG ! tag:stsci.edu:asdf/
--- !core/asdf-1.1.0
data: !core/ndarray-1.0.0
source: 0
datatype: float64
shape: [1024, 1024]
byteorder: little

12 Chapter 3. The tree in-depth

ASDF Standard, Release 1.6.0

An ASDF parser may use the tag to look up the corresponding schema in the ASDF standard and validate the
element. The schema definitions ship as part of the ASDF standard.

An ASDF parser may also use the tag information to convert the element to a native data type. For example, in
Python, an ASDF parser may convert a ndarray (page 34) tag to a Numpy (http://www.numpy.org) array instance,
providing a convenient and familiar interface to the user to access n-dimensional data.

The ASDF standard does not require parser implementations to validate or perform native type conversion, however.
A parser may simply leave the tree represented in the low-level basic data structures. When writing an ASDF file,
however, the elements in the tree must be appropriately tagged for other tools to make use of them.

ASDF parsers must not fail when encountering an unknown tag, but must simply retain the low-level data structure
and the presence of the tag. This is important, as end users will likely want to store their own custom tags in ASDF
files alongside the tags defined in the ASDF standard itself, and the file must still be readable by ASDF parsers that
do not understand those tags.

3.3 References

It is possible to directly reference other items within the same tree or within the tree of another ASDF file. This
functionality is based on two IETF standards: JSON Pointer (IETF RFC 6901) (http://tools.ietf.org/html/rfc6901)
and JSON Reference (Draft 3) (http://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03).

A reference is represented as a mapping (dictionary) with a single key/value pair. The key is always the special
keyword $ref and the value is a URI. The URI may contain a fragment (the part following the # character) in JSON
Pointer syntax that references a specific element within the external file. This is a /-delimited path where each
element is a mapping key or an array index. If no fragment is present, the reference refers to the top of the tree.

Note: JSON Pointer is a very simple convention. The only wrinkle is that because the characters '~' (0x7E) and
'/' (0x2F) have special meanings, '~' needs to be encoded as '~0' and '/' needs to be encoded as '~1' when
these characters appear in a reference token.

When these references are resolved, this mapping should be treated as having the same logical content as the
target of the URI, though the exact details of how this is performed is dependent on the implementation, i.e., a
library may copy the target data into the source tree, or it may insert a proxy object that is lazily loaded at a later
time.

For example, suppose we had a given ASDF file containing some shared reference data, available on a public
webserver at the URI http://www.nowhere.com/reference.asdf:

wavelengths:
- !core/ndarray
source: 0
shape: [256, 256]
datatype: float
byteorder: little

Another file may reference this data directly:

reference_data:
$ref: "http://www.nowhere.com/reference.asdf#/wavelengths/0"

It is also possible to use references within the same file:

3.3. References 13

http://www.numpy.org
http://tools.ietf.org/html/rfc6901
http://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03

ASDF Standard, Release 1.6.0

data: !core/ndarray
source: 0
shape: [256, 256]
datatype: float
byteorder: little
mask:
$ref: "#/my_mask"

my_mask: !core/ndarray
source: 0
shape: [256, 256]
datatype: uint8
byteorder: little

Reference resolution should be performed after the entire tree is read, therefore forward references within the
same file are explicitly allowed.

Note: The YAML 1.1 standard itself also provides a method for internal references called “anchors” and “aliases”.
It does not, however, support external references. While ASDF does not explicitly disallow YAML anchors and
aliases, since it explicitly supports all of YAML 1.1, their use is discouraged in favor of the more flexible JSON
Pointer/JSON Reference standard described above.

3.4 Numeric literals

Integers represented as string literals in the ASDF tree must be no more than 64-bits. Due to ndarray types in
numpy, this is further restricted to ranges defined for signed 64-bit integers (int64), not unsigned 64-bit integers
(uint64).

3.5 Comments

It is quite common in FITS files to see comments that describe the purpose of the key/value pair. For example:

DATE = '2015-02-12T23:08:51.191614' / Date this file was created (UTC)
TACID = 'NOAO ' / Time granting institution

Bringing this convention over to ASDF, one could imagine:

Date this file was created (UTC)
creation_date: !time/utc
2015-02-12T23:08:51.191614

Time granting institution
time_granting_institution: NOAO

It should be obvious from the examples that these kinds of comments, describing the global meaning of a key, are
much less necessary in ASDF. Since ASDF is not limited to 8-character keywords, the keywords themselves can
be much more descriptive. But more importantly, the schema for a given key/value pair describes its purpose in
detail. (It would be quite straightforward to build a tool that, given an entry in a YAML tree, looks up the schema’s
description associated with that entry.) Therefore, the use of comments to describe the global meaning of a value
are strongly discouraged.

14 Chapter 3. The tree in-depth

ASDF Standard, Release 1.6.0

However, there still may be cases where a comment may be desired in ASDF, such as when a particular value
is unusual or unexpected. The YAML standard includes a convention for comments, providing a handy way to
include annotations in the ASDF file:

We set this to filter B here, even though C is the more obvious
choice, because B is handled with more accuracy by our software.
filter:
type: B

Unfortunately, most YAML parsers will simply throw these comments out and do not provide any mechanism to
retain them, so reading in an ASDF file, making some changes, and writing it out will remove all comments. Even
if the YAML parser could be improved or extended to retain comments, the YAML standard does not define which
values the comments are associated with. In the above example, it is only by standard reading conventions that
we assume the comment is associated with the content following it. If we were to move the content, where should
the comment go?

To provide a mechanism to add user comments without swimming upstream against the YAML standard, we
recommend a convention for associating comments with objects (mappings) by using the reserved key name //.
In this case, the above example would be rewritten as:

filter:
//: |
We set this to filter B here, even though C was used, because B
is handled with more accuracy by our software.

type: B

ASDF parsers must not interpret or react programmatically to these comment values: they are for human reference
only. No schema may use // as a meaningful key.

3.6 Null values

YAML permits serialization of null values using the null literal:

some_key: null

Previous versions of the ASDF Standard were vague as to how nulls should be handled, and the Python reference
implementation did not distinguish between keys with null values and keys that were missing altogether (and in
fact, removed any keys assigned None from the tree on read or write). Beginning with ASDF Standard 1.6.0, ASDF
implementatations are required to preserve keys even if assigned null values. This requirement does not extend
back into previous versions, and users of the Python implementation should be advised that the YAML portion of a
< 1.6.0 ASDF file containing null values may be modified in unexpected ways when read or written.

3.6. Null values 15

ASDF Standard, Release 1.6.0

16 Chapter 3. The tree in-depth

CHAPTER 4

VERSIONING CONVENTIONS

One of the explicit goals of ASDF is to be as future proof as possible. This involves being able to add features as
needed while still allowing older libraries that may not understand those new features to reasonably make sense
of the rest of the file.

The ASDF standard includes three categories of versions, all of which may advance independently of one another.

• Standard version: The version of the standard as a whole. This version provides a convenient handle to
refer to a particular snapshot of the ASDF standard at a given time. This allows libraries to advertise support
for “ASDF standard version X.Y.Z”.

• File format version: Refers to the version of the blocking scheme and other details of the low-level file
layout. This is the number that appears on the #ASDF header line at the start of every ASDF file and is
essential to correctly interpreting the various parts of an ASDF file.

• Schema versions: Each schema for a particular YAML tag is individually versioned. This allows schemas to
evolve, while still allowing data written to an older version of the schema to be validated correctly.

Schemas provided by third parties (i.e. not in the ASDF specification itself) are also strongly encouraged to
be versioned as well.

Version numbers all follow the same convention according to the Semantic Versioning 2.0.0
(http://semver.org/spec/v2.0.0.html) specification.

• major version: The major version number advances when a backward incompatible change is made. For
example, this would happen when an existing property in a schema changes meaning. (An exception to this
is that when the major version is 0, there are no guarantees of backward compatibility.)

• minor version: The minor version number advances when a backward compatible change is made. For
example, this would happen when new properties are added to a schema.

• patch version: The patch version number advances when a minor change is made that does not directly
affect the file format itself. For example, this would happen when a misspelling or grammatical error in the
specification text is made that does not affect the interpretation of an ASDF file.

• pre-release version: An optional fourth part may also be present following a hyphen to indicate a pre-release
version in development. For example, the pre-release of version 1.2.3 would be 1.2.3-dev+a2c4.

17

http://semver.org/spec/v2.0.0.html

ASDF Standard, Release 1.6.0

4.1 Relationship of version numbers

The major number in the standard version is incremented whenever the major number in the file format version
is incremented.

Schema versions are created and adjusted independently of the standad version and the file format version.
New schemas are created with version 1.0.0 and are updated according to the Semantic Versioning conventions
discussed above.

An update to any of the schema versions will be reflected in a bump of the standard version as well, although
the version numbers will not necessarily match. Bumping a particular schema version will also require new
versions of any of the schemas that make reference to it.

For example, schema Foo has version 1.0.0 in version 1.2.0 of the Standard. We make a backwards compatible
change to Foo and bump its version to 1.1.0. Schema Bar contains a reference to Foo. The current version of
Bar is 1.1.0, and we must now bump it to 1.2.0 to reflect the new reference to Foo-1.1.0. We also bump the
Standard version to 1.3.0 to reflect the changes to these schemas.

4.2 Handling version mismatches

Given these conventions, the ASDF standard recommends certain behavior of ASDF libraries. ASDF libraries should,
but are not required, to support as many existing versions of the file format and schemas as possible, and use the
version numbers in the file to act accordingly.

For future-proofing, the library should gracefully handle version numbers that are greater than those understood
by the library. The following applies to both kinds of version numbers that appear in the file: the file format
version and schema versions.

• When encountering a major version that is greater than the understood version, by default, an exception
should be raised. This behavior may be overridden through explicit user interaction, in which case the library
will attempt to handle the element using the conventions of the most recent understood version.

• When encountering a minor version that is greater than the understood version, a warning should be
emitted, and the library should attempt to handle the element using the conventions of the most recent
understood version.

• When encountering a patch version that is greater than the understood version, silently ignore the difference
and handle the element using the conventions of the most recent understood version.

When writing ASDF files, it is recommended that libraries provide both of the following modes of operation:

• Upgrade the file to the latest versions of the file format and schemas understood by the library.

• Preserve the version of the ASDF standard used by the input file.

Writing out a file that mixes versions of schema from different versions of the ASDF standard is not recommended,
though such a file should be accepted by readers given the rules above.

18 Chapter 4. Versioning Conventions

CHAPTER 5

ASDF SCHEMAS

ASDF uses JSON Schema (http://json-schema.org) to perform validation of ASDF files. Schema validation of ASDF
files serves the following purposes:

• Ensures conformity with core data types defined by the ASDF Standard. ASDF readers can detect whether
an ASDF file has been modified in a way that would render it unreadable or unrecognizable.

• Enables interoperability between ASDF implementations. Implementations that recognize the same schema
definitions should be able to interpret files containing instances of data types that conform to those schemas.

• Allows for the definition of custom data types. External software packages can provide ASDF schemas that
correspond to types provided by that package, and then serialize instances of those types in a way that is
standardized and portable.

All ASDF implementations must implement the types defined by the core schemas (page 29) and validate against
them when reading files.1 The ASDF Standard also defines two other categories of schemas, which are optional
for ASDF implementations:

• unit (page 67)

• time (page 72)

The ASDF Standard also defines two metaschemas which are used to validate the ASDF schemas themselves:

• YAML Schema (page 81)

• ASDF Schema (page 88)

More information on the schemas defined by ASDF can be found in ASDF Schema Definitions (page 29).

1 Implementations may expose the control of validation on reading to the user (e.g. to disable it on demand). However, validation on
reading should be the default behavior.

19

http://json-schema.org

ASDF Standard, Release 1.6.0

5.1 Schema Implementation

ASDF schemas are encoded in YAML and conform to a superset of JSON Schema (http://json-schema.org) called
YAML Schema (page 81). The version of YAML supported by ASDF is 1.1. Accordingly, all schemas begin with the
following YAML header:

%YAML 1.1

The following top-level attributes are required for all ASDF schemas:2

• $schema: Indicates the metaschema definition used to validate this schema

• id: A name that uniquely identifies the schema

• tag: The YAML tag corresponding to the type described by this schema

Each of these attributes is described in more detail below.

5.1.1 $schema

ASDF schemas use the top-level $schema attribute to declare the metaschema that is used to validate the schema
itself. Most custom ASDF schemas will conform to YAML Schema (page 81) defined by the ASDF Standard, and so
will have the following top-level attribute:

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"

Some ASDF schemas use the ASDF metaschema (page 88) instead (e.g. ndarray (page 34)). It is also possible
to create custom metaschemas, although these should always inherit from either YAML Schema or the ASDF
metaschema.3

Some ASDF implementations may choose to validate the schemas themselves (e.g. as part of a regression testing
suite). The $schema keyword should be used to determine the metaschema to be used for validation. All schemas
should also validate successfully against YAML Schema (page 81).

5.1.2 id

The id represents the globally unique name of the schema. It must be a valid URI
(https://tools.ietf.org/html/rfc3986) and cannot be an empty string or an empty fragment (e.g. #). See
Naming Conventions (page 22) for conventions to ensure global uniqueness.

While the id must be a valid URI, it does not have to describe a real location on disk or on a network. For example,
the id values for all schemas in the ASDF Standard begin with the prefix http://stsci.edu/schemas/asdf/.
However, as of this writing, none of the schemas are actually hosted at that location.

The id keyword is used for reference resolution both within a schema and between schemas. Relative references
within a schema are resolved against the id of that schema. A reference to an external schema uses the id of that
schema. See References (page 21) below for additional information.

Each ASDF implementation must define how to resolve a schema id to a real resource that contains the schema
itself. This could be done in a variety of ways, but the following seem like the most likely possibilities:

2 The presence of id and tag is not currently enforced by the YAML Schema but may be in a future version of the ASDF Standard. Authors
of new schemas should assume that at the very least id will be required in a future version of the Standard.

3 For an example of how to inherit from another metaschema, look at the contents of the ASDF metaschema and see how there is a reference
to the YAML schema in the top-level allOf.

20 Chapter 5. ASDF Schemas

http://json-schema.org
https://tools.ietf.org/html/rfc3986
generated/stsci.edu/asdf/asdf-schema-1.0.0.html#Original%20Schema

ASDF Standard, Release 1.6.0

• Resolve the id to a real network location (assuming the schema is actually hosted at that location)

• Map the id to a file location on disk that contains the schema

Other mappings are possible in theory. For example, a schema could be stored in a string literal as part of a
program.

5.1.3 tag

The tag attribute is used by ASDF to associate an instance of a data type in an ASDF file with the
appropriate schema to be used for validation. It is a concept from YAML (see the documentation
(https://yaml.org/spec/1.1/#tag/information%20model)).

Libraries that provide custom schemas must ensure that the YAML tag that is written for a particular data type
must match the tag attribute in the schema that corresponds to the data type. Tags must conform to the tag URI
scheme which is defined in RFC 4151 (https://tools.ietf.org/html/rfc4151), but are otherwise perfectly arbitrary.
However, certain Naming Conventions (page 22) are recommended in order to facilitate a mapping between tag
and id attributes.

ASDF implementations must be able to map tag attributes to the corresponding schema id. The way that this
mapping is defined is up to individual implementations. However, if the Naming Conventions (page 22) are
followed, most implementations will be able to perform prefix matching and replacement.

While the id attribute will almost certainly become required in a future version of the ASDF Standard, the tag
attribute may remain optional. This is because schemas can be referenced by id without necessarily referring to a
particular tagged type in the YAML representation.

5.1.4 Descriptive information

Each schema may optionally contain descriptive fields: title, description and examples. These fields may
contain core markdown syntax (which will be used for the purposes of rendering schema documentation by, for
example, sphinx-asdf (https://github.com/spacetelescope/sphinx-asdf)).

• title: A one-line summary of the data type described by the schema

• description: A lengthier prose description of the schema

• examples: A list of example content that conforms to the schema, illustrating how to use it.

5.1.5 References

A particular ASDF schemas can contain references to other ASDF schemas. References are encoded by using the
$ref attribute anywhere in the tree. While JSON Schema (http://json-schema.org) references are purely based on
id, ASDF implementations must be able to resolve references using both id and tag attributes.

The resolution of id or tag references to actual schema files is up to individual implementations. It is recommended
for ASDF implementations to use a two-phase mapping: one from tag to id, and another from id to an actual
schema resource. In most cases, the id will be resolved to a location on disk (e.g. to a schema file that is installed
in a known location). However, other scenarios might involve schemas that are hosted on a network, or schemas
that are embedded in source files as string literals.

5.1. Schema Implementation 21

https://yaml.org/spec/1.1/#tag/information%20model
https://tools.ietf.org/html/rfc4151
https://github.com/spacetelescope/sphinx-asdf
http://json-schema.org

ASDF Standard, Release 1.6.0

5.1.6 Naming Conventions

Schema id attributes must be valid URIs. Schema tag attributes must be valid URIs that conform to the tag URI
scheme defined in RFC 4151 (https://tools.ietf.org/html/rfc4151) Aside from these requirements, assignment of
these attributes is perfectly arbitrary. However, certain conventions are strongly recommended in order to ensure
uniqueness and to enable a simple correspondence between the id and tag attributes. These conventions are
described below.

All schema ids should encode the following information:

• organization: Indicates the organization that created the schema

• standard: The “standard” this schema belongs to. This will usually correspond to the name of the software
package that provides this schema.

• name: The name of the data type corresponding to this schema.

• version: The version of the schema. See Versioning Conventions (page 17) for more details.

Consider the schemas from the ASDF Standard as an example. In this case, the organization is stsci.edu, which
is the web address of the organization that created the schemas. The standard is asdf. Each individual schema in
the ASDF Standard has a different name field. In the case of the ndarray (page 34) data type, for example, the
name is core/ndarray. The version of ndarray (page 34) is 1.0.0. Some other types in the ASDF Standard have
multiple versions, such as quantity-1.0.0 and quantity-1.1.0 (page 70).

While schema ids can be any valid URI, under this convention they always begin with http://. The general format
of the id attribute becomes:

http://<organization>/schemas/<standard>/<name>-<version>

Continuing with the example of ndarray (page 34), we have:

id: "http://stsci.edu/schemas/asdf/core/ndarray-1.0.0"

The idea behind the convention for id is that it should be possible (in principle if not in practice) for schemas to be
hosted at the corresponding URL. This motivates the choice of the organization’s web address as the organization
component. However, this is not a requirement. The primary objective is to create a globally unique id.

Given the components defined above, the tag definition follows in a straightforward manner. The generic tag URI
template is:

tag:<organization>:<standard>/<name>-<version>

Considering ndarray (page 34) once again, we have:

tag: "tag:stsci.edu:asdf/core/ndarray-1.0.0"

Following the naming convention for both id and tag attributes enables a simple mapping from tag to id. In this
case, simply take the prefix tag:stsci.edu: and replace it with http://stsci.edu/schemas/.

22 Chapter 5. ASDF Schemas

https://tools.ietf.org/html/rfc4151

ASDF Standard, Release 1.6.0

5.2 Designing a new tag and schema

This section will walk through the development of a new tag and schema. In the example, suppose we work at
the Example Organization, which can be found on the world wide web at example.org. We’re developing a new
instrument, foo, and we need a way to define the specialized metadata to describe the exposures that it will be
generating.

According to the Naming Conventions (page 22), our tag and id attributes will consist of the following components:

• organization: example.org

• standard: foo

• name: metadata

• version: 1.0.0 (by convention the starting version for all new schemas)

So, for our example instrument metadata, the tag is:

tag:example.org:foo/metadata-1.0.0

Each tag should be associated with a schema in order to validate it. Each schema must also have a universally
unique id, which is in the form of unique URI.

Note that this URI doesn’t actually have to resolve to anything. In fact, visiting that URL in your web browser is
likely to bring up a 404 error. All that’s necessary is that it is universally unique and that the tool reading the ASDF
file is able to map from a tag name to a schema URI, and then load the associated schema.

Again following with our example, we will assign the following URI to refer to our schema:

http://example.org/schemas/foo/metadata-1.0.0

Therefore, in our schema file, we have the following keys, one declaring the name of the YAML tag, and one
defining the id of the schema:

id: "http://example.org/schemas/foo/metadata-1.0.0"
tag: "tag:example.org:foo/metadata-1.0.0"

Since our schema is just a basic ASDF schema, we will declare that it conforms to YAML Schema (page 81) defined
by the ASDF Standard:

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"

5.2.1 Descriptive information

Continuing our example, we include some descriptive metadata (page 21) about the data type declared by the
schema itself:

title: |
Metadata for the foo instrument.

description: |
This stores some information about an exposure from the foo instrument.

examples:
-
- A minimal description of an exposure.
- |

(continues on next page)

5.2. Designing a new tag and schema 23

ASDF Standard, Release 1.6.0

(continued from previous page)

tag:example.org:foo/metadata-1.0.0
exposure_time: 0.001

5.2.2 The schema proper

The rest of the schema describes the acceptable data types and their structure. The format used for this description
comes straight out of JSON Schema, and rather than documenting all of the things it can do here, please refer
to Understanding JSON Schema (http://spacetelescope.github.io/understanding-json-schema/), and the further
resources available at json-schema.org (http://json-schema.org).

In our example, we’ll define two metadata elements: the name of the investigator, and the exposure time, each of
which also have a description:

type: object
properties:

investigator:
type: string
description: |
The name of the principal investigator who requested the
exposure.

exposure_time:
type: number
description: |
The time of the exposure, in nanoseconds.

We’ll also define an optional element for the exposure time unit. This is a somewhat contrived example to
demonstrate how to include elements in your schema that are based on the custom types defined in the ASDF
standard:

exposure_time_units:
$ref: "http://stsci.edu/schemas/asdf/unit/unit-1.0.0"
description: |
The unit of the exposure time.

default:
s

Lastly, we’ll declare exposure_time as being required, and allow extra elements to be added:

required: [exposure_time]
additionalProperties: true

24 Chapter 5. ASDF Schemas

http://spacetelescope.github.io/understanding-json-schema/
http://json-schema.org

ASDF Standard, Release 1.6.0

5.2.3 The complete example

Here is our complete schema example:

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://example.org/schemas/foo/metadata-1.0.0"
tag: "tag:example.org:foo/metadata-1.0.0"

title: |
Metadata for the foo instrument.

description: |
This stores some information about an exposure from the foo instrument.

examples:
-
- A minimal description of an exposure.
- |

tag:example.org:foo/metadata-1.0.0
exposure_time: 0.001

type: object
properties:

investigator:
type: string
description: |
The name of the principal investigator who requested the
exposure.

exposure_time:
type: number
description: |
The time of the exposure, in nanoseconds.

exposure_time_units:
$ref: "http://stsci.edu/schemas/asdf/unit/unit-1.0.0"
description: |
The unit of the exposure time.

default:
s

required: [exposure_time]
additionalProperties: true

5.2. Designing a new tag and schema 25

ASDF Standard, Release 1.6.0

5.3 Extending an existing schema

JSON Schema (http://json-schema.org) does not support the concept of inheritance, which makes it somewhat
awkward to express type hierarchies. However, it is possible to create a custom schema that adds attributes to an
existing schema (e.g. one defined in the ASDF Standard). It is important to remember that it is not possible to
override or remove any of the attributes from the existing schema.

The following important caveats apply when extending an existing schema:

• It is not possible to redefine, override, or delete any attributes in the original schema.

• It will not be possible to add attributes to any node where the original schema declares
additionalProperties: false

• Instances of the custom type will not be recognized as an instance of the original type when resolving schema
references or processing YAML tags (i.e. there is no concept of polymorphism).

Here’s an example of extending a schema using the software (page 54) schema defined by the ASDF Standard.
Here’s the original schema, for reference:

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/core/software-1.0.0"
title: |
Describes a software package.

description: |
General-purpose description of a software package.

tag: "tag:stsci.edu:asdf/core/software-1.0.0"
type: object
properties:

name:
description: |
The name of the application or library.

type: string

author:
description: |
The author (or institution) that produced the software package.

type: string

homepage:
description: |
A URI to the homepage of the software.

type: string
format: uri

version:
description: |
The version of the software used. It is recommended, but not
required, that this follows the (Semantic Versioning
Specification)[http://semver.org/spec/v2.0.0.html].

type: string

(continues on next page)

26 Chapter 5. ASDF Schemas

http://json-schema.org

ASDF Standard, Release 1.6.0

(continued from previous page)

required: [name, version]
additionalProperties: true
...

Since the software schema permits additional properties, we are free to extend it to include an email address for
contacting the author:

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://somewhere.org/schemas/software_extended-1.0.0"
title: |
Describes a software package.

description: |
Extension of ASDF core software schema to include the
software author's contact email.

allOf:
- $ref: http://stsci.edu/schemas/asdf/core/software-1.0.0
- properties:

author_email:
description: |
The contact email of the software author.

type: string
required: [author_email]

...

The crucial portion of this schema definition is the way that the allOf operator is used to join a reference to the
base software schema with the definition of a new property called author_email.

The allOf combiner means that any instance that is validated against software_extended-1.0.0 will have to
conform to both the base software schema and the properties specific to the extended schema.

5.4 Default annotation

The JSON Schema spec includes a schema annotation attribute called default that can be used to describe the
default value of a data attribute when that attribute is missing. Recent versions of the spec point out (http://json-
schema.org/draft/2019-09/json-schema-core.html#rfc.section.7.7.1.1) that there is no single correct way to
choose an annotation value when multiple are available due to references and combiners. This presents a problem
when trying to fill in missing data in a file based on the schema default: if multiple conflicting values are available,
the software does not know how to choose.

Previous versions of the ASDF Standard did not offer guidance on how to use default. The Python reference
implementation read the first default that it encountered as a literal value and inserted that value into the tree
when the corresponding attribute was otherwise missing. Until version 2.8, it also removed attributes on write
whose values matched their schema defaults. The resulting files would appear to the casual viewer to be missing
data, and may in fact be invalid against their schemas if the any of the removed attributes were required.

Implementations must not remove attributes with default values from the tree. Beginning with ASDF Standard
1.6.0, implementations also must not fill default values directly from the schema. This will avoid ambiguity when
multiple schema defaults are present, and also permit the default attribute to contain a description that is not
appropriate to use as a literal default value. For example:

5.4. Default annotation 27

http://json-schema.org/draft/2019-09/json-schema-core.html#rfc.section.7.7.1.1

ASDF Standard, Release 1.6.0

default: An array of zeros matching the dimensions of the data array.

For ASDF Standard < 1.6.0, filling default values from the schema is required. This is necessary to support files
written by older versions of the Python implementation.

28 Chapter 5. ASDF Schemas

CHAPTER 6

ASDF SCHEMA DEFINITIONS

This reference section describes the schema files for the built-in tags in ASDF.

ASDF schemas are arranged into “modules”. All ASDF implementations must support the “core” module, but the
other modules are optional.

6.1 Core

The core module contains schema that must be implemented by every asdf library.

6.1.1 core/asdf-1.1.0

Top-level schema for every ASDF file.

Description

This schema contains the top-level attributes for every ASDF file.

Outline

Schema Definitions

Internal Definitions

Original Schema

Schema Definitions

This type is an object with the following properties:

asdf_library

Describes the ASDF library that produced the file.

history

A log of transformations that have happened to the file. May include such things as data collection, data
calibration pipelines, data analysis etc.

29

ASDF Standard, Release 1.6.0

This node must validate against any of the following:

–

array No length restriction

The first 1 item in the list must be the following types:

history_entry-1.0.0

– #/definitions/history-1.1.0

Internal Definitions

history-1.1.0

This type is an object with the following properties:

extensions No length restriction

The first 1 item in the list must be the following types:

extension_metadata-1.0.0

entries No length restriction

The first 1 item in the list must be the following types:

history_entry-1.0.0

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/core/asdf-1.1.0"
title: |
Top-level schema for every ASDF file.

description: |
This schema contains the top-level attributes for every ASDF file.

tag: "tag:stsci.edu:asdf/core/asdf-1.1.0"
type: object
properties:

asdf_library:
description: |
Describes the ASDF library that produced the file.

$ref: "software-1.0.0"

history:
description: |
A log of transformations that have happened to the file. May
include such things as data collection, data calibration
pipelines, data analysis etc.

anyOf:
This is to support backwards compatibility with older history formats
- type: array
items:
- $ref: "history_entry-1.0.0"

This is the new, richer history implementation that includes
(continues on next page)

30 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

extension metadata.
- $ref: "#/definitions/history-1.1.0"

additionalProperties: true
Make sure that these two metadata fields are always at the top of the file
propertyOrder: [asdf_library, history]

This contains the definition of the new history format, which includes
metadata about the extensions used to create the file.
definitions:
history-1.1.0:
type: object
properties:

extensions:
type: array
items:
- $ref: "extension_metadata-1.0.0"

entries:
type: array
items:
- $ref: "history_entry-1.0.0"

...

6.1.2 core/complex-1.0.0

Complex number value.

Description

Represents a complex number matching the following EBNF grammar

dot = "."
plus-or-minus = "+" | "-"
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
sign = "" | plus-or-minus
suffix = "J" | "j" | "I" | "i"
inf = "inf" | "INF"
nan = "nan" | "NAN"
number = digits | dot digits | digits dot digits
sci-suffix = "e" | "E"
scientific = number sci-suffix sign digits
real = sign number | sign scientific
imag = number suffix | scientific suffix
complex = real | sign imag | real plus-or-minus imag

Though J, j, I and i must be supported on reading, it is recommended to use i on writing.

For historical reasons, it is necessary to accept as valid complex numbers that are surrounded by parenthesis.

Outline

Schema Definitions

Examples

6.1. Core 31

ASDF Standard, Release 1.6.0

Original Schema

Schema Definitions

string No length restriction

Must match the following pattern:

^(((((([+-]?(([0-9]+)|(\.[0-9]+)|([0-9]+\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN)))))|([+-]?
,→(([0-9]+)|(\.[0-9]+)|([0-9]+\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-
,→9]+)))|([+-]?(((([0-9]+)|(\.[0-9]+)|([0-9]+\.[0-
,→9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[iIjJ])|((([0-9]+)|(\.[0-9]+)|([0-9]+\.[0-
,→9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+[iIjJ])))|((([+-]?(([0-9]+)|(\.[0-
,→9]+)|([0-9]+\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN)))))|([+-]?(([0-9]+)|(\.[0-9]+)|([0-9]+\.
,→[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+))[+-](((([0-9]+)|(\.[0-9]+)|([0-9]+\
,→.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[iIjJ])|((([0-9]+)|(\.[0-9]+)|([0-9]+\.[0-
,→9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+[iIjJ])))))|(\((((([+-]?(([0-9]+)|(\.[0-
,→9]+)|([0-9]+\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN)))))|([+-]?(([0-9]+)|(\.[0-9]+)|([0-9]+\.
,→[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+)))|([+-]?(((([0-9]+)|(\.[0-9]+)|([0-
,→9]+\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[iIjJ])|((([0-9]+)|(\.[0-9]+)|([0-9]+\.[0-
,→9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+[iIjJ])))|((([+-]?(([0-9]+)|(\.[0-
,→9]+)|([0-9]+\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN)))))|([+-]?(([0-9]+)|(\.[0-9]+)|([0-9]+\.
,→[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+))[+-](((([0-9]+)|(\.[0-9]+)|([0-9]+\
,→.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[iIjJ])|((([0-9]+)|(\.[0-9]+)|([0-9]+\.[0-
,→9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+[iIjJ]))))\)))$

Examples

1 real, -1 imaginary:

!core/complex-1.0.0 1-1j

0 real, 1 imaginary:

!core/complex-1.0.0 1J

-1 real, 0 imaginary:

!core/complex-1.0.0 -1

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/core/complex-1.0.0"
title: Complex number value.
description: |
Represents a complex number matching the following EBNF grammar

```
dot = "."
plus-or-minus = "+" | "-"
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
sign = "" | plus-or-minus
suffix = "J" | "j" | "I" | "i"

(continues on next page)

32 Chapter 6. ASDF Schema Definitions



ASDF Standard, Release 1.6.0

(continued from previous page)

inf = "inf" | "INF"
nan = "nan" | "NAN"
number = digits | dot digits | digits dot digits
sci-suffix = "e" | "E"
scientific = number sci-suffix sign digits
real = sign number | sign scientific
imag = number suffix | scientific suffix
complex = real | sign imag | real plus-or-minus imag

```

Though `J`, `j`, `I` and `i` must be supported on reading, it is
recommended to use `i` on writing.

For historical reasons, it is necessary to accept as valid complex numbers
that are surrounded by parenthesis.

examples:
-
- 1 real, -1 imaginary
- "!core/complex-1.0.0 1-1j"

-
- 0 real, 1 imaginary
- "!core/complex-1.0.0 1J"

-
- -1 real, 0 imaginary
- "!core/complex-1.0.0 -1"

tag: "tag:stsci.edu:asdf/core/complex-1.0.0"
type: string
This regex was automatically generated from a description of a grammar
pattern: "^(((((([+-]?(([0-9]+)|(\\.[0-9]+)|([0-9]+\\.[0-
,→9]+)|(((inf)|(INF)))|(((nan)|(NAN)))))|([+-]?(([0-9]+)|(\\.[0-9]+)|([0-9]+\\.[0-
,→9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+)))|([+-]?(((([0-9]+)|(\\.[0-9]+)|([0-
,→9]+\\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[iIjJ])|((([0-9]+)|(\\.[0-9]+)|([0-9]+\\.[0-
,→9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+[iIjJ])))|((([+-]?(([0-9]+)|(\\.[0-
,→9]+)|([0-9]+\\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN)))))|([+-]?(([0-9]+)|(\\.[0-9]+)|([0-
,→9]+\\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+))[+-](((([0-9]+)|(\\.[0-
,→9]+)|([0-9]+\\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[iIjJ])|((([0-9]+)|(\\.[0-9]+)|([0-
,→9]+\\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+[iIjJ])))))|(\\((((([+-]?(([0-
,→9]+)|(\\.[0-9]+)|([0-9]+\\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN)))))|([+-]?(([0-9]+)|(\\.[0-
,→9]+)|([0-9]+\\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+)))|([+-]?(((([0-
,→9]+)|(\\.[0-9]+)|([0-9]+\\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[iIjJ])|((([0-9]+)|(\\.
,→[0-9]+)|([0-9]+\\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+[iIjJ])))|((([+-]?
,→(([0-9]+)|(\\.[0-9]+)|([0-9]+\\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN)))))|([+-]?(([0-9]+)|(\
,→\.[0-9]+)|([0-9]+\\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+))[+-](((([0-
,→9]+)|(\\.[0-9]+)|([0-9]+\\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[iIjJ])|((([0-9]+)|(\\.
,→[0-9]+)|([0-9]+\\.[0-9]+)|(((inf)|(INF)))|(((nan)|(NAN))))[eE][+-]?[0-9]+[iIjJ]))))\\)))$"
...

6.1. Core 33

ASDF Standard, Release 1.6.0

6.1.3 core/ndarray-1.0.0

An n-dimensional array.

Description

There are two ways to store the data in an ndarray.

• Inline in the tree: This is recommended only for small arrays. In this case, the entire ndarray tag may be a
nested list, in which case the type of the array is inferred from the content. (See the rules for type inference
in the inline-data definition below.) The inline data may also be given in the data property, in which case
it is possible to explicitly specify the datatype and other properties.

• External to the tree: The data comes from a block (page 7) within the same ASDF file or an external ASDF
file referenced by a URI.

Outline

Schema Definitions

Examples

Internal Definitions

Original Schema

Schema Definitions

This node must validate against any of the following:

• #/definitions/inline-data

•

This type is an object with the following properties:

source

The source of the data.

If an integer: If positive, the zero-based index of the block within the same file. If negative, the
index from the last block within the same file. For example, a source of -1 corresponds to the last
block in the same file.

If a string, a URI to an external ASDF file containing the block data. Relative URIs and file:
and http: protocols must be supported. Other protocols may be supported by specific library
implementations.

The ability to reference block data in an external ASDF file is intentionally limited to the first block in
the external ASDF file, and is intended only to support the needs of exploded (page 10). For the more
general case of referencing data in an external ASDF file, use tree references (page 13).

This node must validate against any of the following:

integer

string No length restriction

data

The data for the array inline.

34 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

If datatype and/or shape are also provided, they must match the data here and can be used as a
consistency check. strides, offset and byteorder are meaningless when data is provided.

shape

The shape of the array.

The first entry may be the string *, indicating that the length of the first index of the array will be
automatically determined from the size of the block. This is used for streaming support. No length
restriction Items in the array must be any of the following types:

integer

Minimum value: 0

This node has no type definition (unrestricted)

datatype

The data format of the array elements.

byteorder

The byte order (big- or little-endian) of the array data. No length restriction

Only the following values are valid for this node:

big

little

offset

The offset, in bytes, within the data for this start of this view.

Minimum value: 0

Default value: 0

strides

The number of bytes to skip in each dimension. If not provided, the array is assumed by be contiguous
and in C order. If provided, must be the same length as the shape property. No length restriction Items
in the array must be any of the following types:

integer

Minimum value: 1

integer

Maximum value: -1

mask

Describes how missing values in the array are stored. If a scalar number, that number is used to
represent missing values. If an ndarray, the given array provides a mask, where non-zero values
represent missing values in this array. The mask array must be broadcastable to the dimensions of this
array.

This node must validate against any of the following:

6.1. Core 35

ASDF Standard, Release 1.6.0

number

complex-1.0.0

This node must validate against all of the following:

·

ndarray-1.0.0

· This node has no type definition (unrestricted)

Examples

An inline array, with implicit data type:

!core/ndarray-1.0.0
[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]

An inline array, with an explicit data type:

!core/ndarray-1.0.0
datatype: float64
data:
[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]

An inline structured array, where the types of each column are automatically detected:

!core/ndarray-1.0.0
[[M110, 110, 205, And],
[M31, 31, 224, And],
[M32, 32, 221, And],
[M103, 103, 581, Cas]]

An inline structured array, where the types of each column are explicitly specified:

!core/ndarray-1.0.0
datatype: [['ascii', 4], uint16, uint16, ['ascii', 4]]
data:
[[M110, 110, 205, And],
[M31, 31, 224, And],
[M32, 32, 221, And],
[M103, 103, 581, Cas]]

A double-precision array, in contiguous memory in a block within the same file:

!core/ndarray-1.0.0
source: 0
shape: [1024, 1024]
datatype: float64
byteorder: little

A view of a tile in that image:

36 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

!core/ndarray-1.0.0
source: 0
shape: [256, 256]
datatype: float64
byteorder: little
strides: [8192, 8]
offset: 2099200

A structured datatype, with nested columns for a coordinate in (ra, dec), and a 3x3 convolution kernel:

!core/ndarray-1.0.0
source: 0
shape: [64]
datatype:
- name: coordinate
datatype:
- name: ra
datatype: float64

- name: dec
datatype: float64

- name: kernel
datatype: float32
shape: [3, 3]

byteorder: little

An array in Fortran order:

!core/ndarray-1.0.0
source: 0
shape: [1024, 1024]
datatype: float64
byteorder: little
strides: [8192, 8]

An array where values of -999 are treated as missing:

!core/ndarray-1.0.0
source: 0
shape: [256, 256]
datatype: float64
byteorder: little
mask: -999

An array where another array is used as a mask:

!core/ndarray-1.0.0
source: 0
shape: [256, 256]
datatype: float64
byteorder: little
mask: !core/ndarray-1.0.0
source: 1
shape: [256, 256]

(continues on next page)

6.1. Core 37

ASDF Standard, Release 1.6.0

(continued from previous page)

datatype: bool8
byteorder: little

An array where the data is stored in the first block in another ASDF file.:

!core/ndarray-1.0.0
source: external.asdf
shape: [256, 256]
datatype: float64
byteorder: little

Internal Definitions

scalar-datatype

Describes the type of a single element.

There is a set of numeric types, each with a single identifier:

• int8, int16, int32, int64: Signed integer types, with the given bit size.

• uint8, uint16, uint32, uint64: Unsigned integer types, with the given bit size.

• float32: Single-precision floating-point type or “binary32”, as defined in IEEE 754.

• float64: Double-precision floating-point type or “binary64”, as defined in IEEE 754.

• complex64: Complex number where the real and imaginary parts are each single-precision floating-point
(“binary32”) numbers, as defined in IEEE 754.

• complex128: Complex number where the real and imaginary parts are each double-precision floating-point
(“binary64”) numbers, as defined in IEEE 754.

There are two distinct fixed-length string types, which must be indicated with a 2-element array where the first
element is an identifier for the string type, and the second is a length:

• ascii: A string containing ASCII text (all codepoints < 128), where each character is 1 byte.

• ucs4: A string containing unicode text in the UCS-4 encoding, where each character is always 4 bytes long.
Here the number of bytes used is 4 times the given length.

This node must validate against any of the following:

•

string No length restriction

Only the following values are valid for this node:

– int8

– uint8

– int16

– uint16

– int32

– uint32

– int64

– uint64

38 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

– float32

– float64

– complex64

– complex128

– bool8

•

array No length restriction

The first 2 items in the list must be the following types:

string No length restriction

Only the following values are valid for this node:

ascii

ucs4

integer

Minimum value: 0

datatype

The data format of the array elements. May be a single scalar datatype, or may be a nested list of datatypes. When
a list, each field may have a name.

This node must validate against any of the following:

• #/definitions/scalar-datatype

•

array No length restriction Items in the array must be any of the following types:

– #/definitions/scalar-datatype

–

This type is an object with the following properties:

name

The name of the field No length restriction

Must match the following pattern:

[A-Za-z_][A-Za-z0-9_]*

datatype

byteorder

The byteorder for the field. If not provided, the byteorder of the datatype as a whole will be used.
No length restriction

Only the following values are valid for this node:

· big

· little

shape No length restriction

6.1. Core 39

ASDF Standard, Release 1.6.0

Items in the array are restricted to the following types:

integer

Minimum value: 0

inline-data

Inline data is stored in YAML format directly in the tree, rather than referencing a binary block. It is made out of
nested lists.

If the datatype of the array is not specified, it is inferred from the array contents. Type inference is supported only
for homogeneous arrays, not tables.

• If any of the elements in the array are YAML strings, the datatype of the entire array is ucs4, with the width
of the largest string in the column, otherwise. . .

• If any of the elements in the array are complex numbers, the datatype of the entire column is complex128,
otherwise. . .

• If any of the types in the column are numbers with a decimal point, the datatype of the entire column is
float64, otherwise..

• If any of the types in the column are integers, the datatype of the entire column is int64, otherwise. . .

• The datatype of the entire column is bool8.

Masked values may be included in the array using null. If an explicit mask array is also provided, it takes
precedence. No length restriction Items in the array must be any of the following types:

•

number

•

string No length restriction

•

null

• complex-1.0.0

• #/definitions/inline-data

•

boolean

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/core/ndarray-1.0.0"
tag: "tag:stsci.edu:asdf/core/ndarray-1.0.0"

title: >
An *n*-dimensional array.

description: |
There are two ways to store the data in an ndarray.

(continues on next page)

40 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

- Inline in the tree: This is recommended only for small arrays. In
this case, the entire ``ndarray`` tag may be a nested list, in
which case the type of the array is inferred from the content.
(See the rules for type inference in the ``inline-data``
definition below.) The inline data may also be given in the
``data`` property, in which case it is possible to explicitly
specify the ``datatype`` and other properties.

- External to the tree: The data comes from a [block](ref:block)
within the same ASDF file or an external ASDF file referenced by a
URI.

examples:
-
- An inline array, with implicit data type
- |

!core/ndarray-1.0.0
[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]

-
- An inline array, with an explicit data type
- |

!core/ndarray-1.0.0
datatype: float64
data:

[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]

-
- An inline structured array, where the types of each column are
automatically detected

- |
!core/ndarray-1.0.0
[[M110, 110, 205, And],
[M31, 31, 224, And],
[M32, 32, 221, And],
[M103, 103, 581, Cas]]

-
- An inline structured array, where the types of each column are
explicitly specified

- |
!core/ndarray-1.0.0
datatype: [['ascii', 4], uint16, uint16, ['ascii', 4]]
data:
[[M110, 110, 205, And],
[M31, 31, 224, And],
[M32, 32, 221, And],
[M103, 103, 581, Cas]]

(continues on next page)

6.1. Core 41

ASDF Standard, Release 1.6.0

(continued from previous page)

-
- A double-precision array, in contiguous memory in a block within
the same file

- |
!core/ndarray-1.0.0
source: 0
shape: [1024, 1024]
datatype: float64
byteorder: little

-
- A view of a tile in that image
- |

!core/ndarray-1.0.0
source: 0
shape: [256, 256]
datatype: float64
byteorder: little
strides: [8192, 8]
offset: 2099200

-
- A structured datatype, with nested columns for a coordinate in
(*ra*, *dec*), and a 3x3 convolution kernel

- |
!core/ndarray-1.0.0
source: 0
shape: [64]
datatype:

- name: coordinate
datatype:
- name: ra
datatype: float64

- name: dec
datatype: float64

- name: kernel
datatype: float32
shape: [3, 3]

byteorder: little

-
- An array in Fortran order
- |

!core/ndarray-1.0.0
source: 0
shape: [1024, 1024]
datatype: float64
byteorder: little
strides: [8192, 8]

-
(continues on next page)

42 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

- An array where values of -999 are treated as missing
- |

!core/ndarray-1.0.0
source: 0
shape: [256, 256]
datatype: float64
byteorder: little
mask: -999

-
- An array where another array is used as a mask
- |

!core/ndarray-1.0.0
source: 0
shape: [256, 256]
datatype: float64
byteorder: little
mask: !core/ndarray-1.0.0
source: 1
shape: [256, 256]
datatype: bool8
byteorder: little

-
- An array where the data is stored in the first block in
another ASDF file.

- |
!core/ndarray-1.0.0
source: external.asdf
shape: [256, 256]
datatype: float64
byteorder: little

definitions:
scalar-datatype:
description: |
Describes the type of a single element.

There is a set of numeric types, each with a single identifier:

- `int8`, `int16`, `int32`, `int64`: Signed integer types, with
the given bit size.

- `uint8`, `uint16`, `uint32`, `uint64`: Unsigned integer types,
with the given bit size.

- `float32`: Single-precision floating-point type or "binary32",
as defined in IEEE 754.

- `float64`: Double-precision floating-point type or "binary64",
as defined in IEEE 754.

(continues on next page)

6.1. Core 43

ASDF Standard, Release 1.6.0

(continued from previous page)

- `complex64`: Complex number where the real and imaginary parts
are each single-precision floating-point ("binary32") numbers,
as defined in IEEE 754.

- `complex128`: Complex number where the real and imaginary
parts are each double-precision floating-point ("binary64")
numbers, as defined in IEEE 754.

There are two distinct fixed-length string types, which must
be indicated with a 2-element array where the first element is an
identifier for the string type, and the second is a length:

- `ascii`: A string containing ASCII text (all codepoints <
128), where each character is 1 byte.

- `ucs4`: A string containing unicode text in the UCS-4
encoding, where each character is always 4 bytes long. Here
the number of bytes used is 4 times the given length.

anyOf:
- type: string
enum: [int8, uint8, int16, uint16, int32, uint32, int64, uint64,

float32, float64, complex64, complex128, bool8]
- type: array
items:
- type: string
enum: [ascii, ucs4]

- type: integer
minimum: 0

minLength: 2
maxLength: 2

datatype:
description: |
The data format of the array elements. May be a single scalar
datatype, or may be a nested list of datatypes. When a list, each field
may have a name.

anyOf:
- $ref: "#/definitions/scalar-datatype"
- type: array
items:
anyOf:
- $ref: "#/definitions/scalar-datatype"
- type: object
properties:
name:
type: string
pattern: "[A-Za-z_][A-Za-z0-9_]*"
description: The name of the field

datatype:
$ref: "#/definitions/datatype"

byteorder:
(continues on next page)

44 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

type: string
enum: [big, little]
description: |
The byteorder for the field. If not provided, the
byteorder of the datatype as a whole will be used.

shape:
type: array
items:
type: integer
minimum: 0

required: [datatype]

inline-data:
description: |
Inline data is stored in YAML format directly in the tree, rather than
referencing a binary block. It is made out of nested lists.

If the datatype of the array is not specified, it is inferred from
the array contents. Type inference is supported only for
homogeneous arrays, not tables.

- If any of the elements in the array are YAML strings, the
`datatype` of the entire array is `ucs4`, with the width of
the largest string in the column, otherwise...

- If any of the elements in the array are complex numbers, the
`datatype` of the entire column is `complex128`, otherwise...

- If any of the types in the column are numbers with a decimal
point, the `datatype` of the entire column is `float64`,
otherwise..

- If any of the types in the column are integers, the `datatype`
of the entire column is `int64`, otherwise...

- The `datatype` of the entire column is `bool8`.

Masked values may be included in the array using `null`. If an
explicit mask array is also provided, it takes precedence.

type: array
items:
anyOf:
- type: number
- type: string
- type: "null"
- $ref: "complex-1.0.0"
- $ref: "#/definitions/inline-data"
- type: boolean

anyOf:
- $ref: "#/definitions/inline-data"

(continues on next page)

6.1. Core 45

ASDF Standard, Release 1.6.0

(continued from previous page)

- type: object
properties:
source:

description: |
The source of the data.

- If an integer: If positive, the zero-based index of the
block within the same file. If negative, the index from
the last block within the same file. For example, a
source of `-1` corresponds to the last block in the same
file.

- If a string, a URI to an external ASDF file containing the
block data. Relative URIs and ``file:`` and ``http:``
protocols must be supported. Other protocols may be supported
by specific library implementations.

The ability to reference block data in an external ASDF file
is intentionally limited to the first block in the external
ASDF file, and is intended only to support the needs of
[exploded](ref:exploded). For the more general case of
referencing data in an external ASDF file, use tree
[references](ref:references).

anyOf:
- type: integer
- type: string
format: uri

data:
description: |
The data for the array inline.

If `datatype` and/or `shape` are also provided, they must
match the data here and can be used as a consistency check.
`strides`, `offset` and `byteorder` are meaningless when
`data` is provided.

$ref: "#/definitions/inline-data"

shape:
description: |
The shape of the array.

The first entry may be the string `*`, indicating that the
length of the first index of the array will be automatically
determined from the size of the block. This is used for
streaming support.

type: array
items:
anyOf:
- type: integer
minimum: 0

(continues on next page)

46 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

- enum: ['*']

datatype:
description: |
The data format of the array elements.

$ref: "#/definitions/datatype"

byteorder:
description: >
The byte order (big- or little-endian) of the array data.

type: string
enum: [big, little]

offset:
description: >
The offset, in bytes, within the data for this start of this
view.

type: integer
minimum: 0
default: 0

strides:
description: >
The number of bytes to skip in each dimension. If not provided,
the array is assumed by be contiguous and in C order. If
provided, must be the same length as the shape property.

type: array
items:
anyOf:
- type: integer
minimum: 1

- type: integer
maximum: -1

mask:
description: >
Describes how missing values in the array are stored. If a
scalar number, that number is used to represent missing values.
If an ndarray, the given array provides a mask, where non-zero
values represent missing values in this array. The mask array
must be broadcastable to the dimensions of this array.

anyOf:
- type: number
- $ref: "complex-1.0.0"
- allOf:

- $ref: "ndarray-1.0.0"
- datatype: bool8

dependencies:
source: [shape, datatype, byteorder]

propertyOrder: [source, data, mask, datatype, byteorder, shape, offset, strides]
(continues on next page)

6.1. Core 47

ASDF Standard, Release 1.6.0

(continued from previous page)

...

6.1.4 core/table-1.0.0

A table.

Description

A table is represented as a list of columns, where each entry is a column (page 52) object, containing the data and
some additional information.

The data itself may be stored inline as text, or in binary in either row- or column-major order by use of the strides
property on the individual column arrays.

Each column in the table must have the same first (slowest moving) dimension.

Outline

Schema Definitions

Examples

Original Schema

Schema Definitions

This type is an object with the following properties:

columns

A list of columns in the table. No length restriction

Items in the array are restricted to the following types:

column-1.0.0

meta

Additional free-form metadata about the table.

object

Default value:

{}

Examples

A table stored in column-major order, with each column in a separate block:

!core/table-1.0.0
columns:
- !core/column-1.0.0
data: !core/ndarray-1.0.0

source: 0
datatype: float64
byteorder: little
shape: [3]

description: RA
meta: {foo: bar}

(continues on next page)

48 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

name: a
unit: !unit/unit-1.0.0 deg

- !core/column-1.0.0
data: !core/ndarray-1.0.0
source: 1
datatype: float64
byteorder: little
shape: [3]

description: DEC
name: b

- !core/column-1.0.0
data: !core/ndarray-1.0.0
source: 2
datatype: [ascii, 1]
byteorder: big
shape: [3]

description: The target name
name: c

A table stored in row-major order, all stored in the same block:

!core/table-1.0.0
columns:
- !core/column-1.0.0
data: !core/ndarray-1.0.0

source: 0
datatype: float64
byteorder: little
shape: [3]
strides: [13]

description: RA
meta: {foo: bar}
name: a
unit: !unit/unit-1.0.0 deg

- !core/column-1.0.0
data: !core/ndarray-1.0.0
source: 0
datatype: float64
byteorder: little
shape: [3]
offset: 4
strides: [13]

description: DEC
name: b

- !core/column-1.0.0
data: !core/ndarray-1.0.0
source: 0
datatype: [ascii, 1]
byteorder: big
shape: [3]
offset: 12
strides: [13]

(continues on next page)

6.1. Core 49

ASDF Standard, Release 1.6.0

(continued from previous page)

description: The target name
name: c

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/core/table-1.0.0"
tag: "tag:stsci.edu:asdf/core/table-1.0.0"

title: >
A table.

description: |
A table is represented as a list of columns, where each entry is a
[column](ref:core/column-1.0.0)
object, containing the data and some additional information.

The data itself may be stored inline as text, or in binary in either
row- or column-major order by use of the `strides` property on the
individual column arrays.

Each column in the table must have the same first (slowest moving)
dimension.

examples:
-
- A table stored in column-major order, with each column in a separate block
- |

!core/table-1.0.0
columns:
- !core/column-1.0.0

data: !core/ndarray-1.0.0
source: 0
datatype: float64
byteorder: little
shape: [3]

description: RA
meta: {foo: bar}
name: a
unit: !unit/unit-1.0.0 deg

- !core/column-1.0.0
data: !core/ndarray-1.0.0
source: 1
datatype: float64
byteorder: little
shape: [3]

description: DEC
name: b

- !core/column-1.0.0
data: !core/ndarray-1.0.0

(continues on next page)

50 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

source: 2
datatype: [ascii, 1]
byteorder: big
shape: [3]

description: The target name
name: c

-
- A table stored in row-major order, all stored in the same block
- |

!core/table-1.0.0
columns:
- !core/column-1.0.0

data: !core/ndarray-1.0.0
source: 0
datatype: float64
byteorder: little
shape: [3]
strides: [13]

description: RA
meta: {foo: bar}
name: a
unit: !unit/unit-1.0.0 deg

- !core/column-1.0.0
data: !core/ndarray-1.0.0
source: 0
datatype: float64
byteorder: little
shape: [3]
offset: 4
strides: [13]

description: DEC
name: b

- !core/column-1.0.0
data: !core/ndarray-1.0.0
source: 0
datatype: [ascii, 1]
byteorder: big
shape: [3]
offset: 12
strides: [13]

description: The target name
name: c

type: object
properties:

columns:
description: |
A list of columns in the table.

type: array
items:
$ref: column-1.0.0

(continues on next page)

6.1. Core 51

ASDF Standard, Release 1.6.0

(continued from previous page)

meta:
description: |
Additional free-form metadata about the table.

type: object
default: {}

additionalProperties: false
required: [columns]
...

6.1.5 core/column-1.0.0

A column in a table.

Description

Each column contains a name and an array of data, and an optional description and unit.

Outline

Schema Definitions

Original Schema

Schema Definitions

This type is an object with the following properties:

name

The name of the column. Each name in a table (http://stsci.edu/schemas/asdf/core/table-1.0.0) must be
unique. No length restriction

Must match the following pattern:

[A-Za-z_][A-Za-z0-9_]*

data

The array data for the column.

This node must validate against all of the following:

– ndarray-1.0.0

description

An optional description of the column. No length restriction

Default value: ‘’

unit

An optional unit for the column.

This node must validate against all of the following:

– ../unit/unit-1.0.0

meta

Additional free-form metadata about the column.

52 Chapter 6. ASDF Schema Definitions

http://stsci.edu/schemas/asdf/core/table-1.0.0

ASDF Standard, Release 1.6.0

object

Default value:

{}

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/core/column-1.0.0"
tag: "tag:stsci.edu:asdf/core/column-1.0.0"

title: >
A column in a table.

description: |
Each column contains a name and an array of data, and an optional description
and unit.

type: object
properties:

name:
description: |
The name of the column. Each name in a
[table](http://stsci.edu/schemas/asdf/core/table-1.0.0) must be
unique.

type: string
pattern: "[A-Za-z_][A-Za-z0-9_]*"

data:
description: |
The array data for the column.

allOf:
- $ref: ndarray-1.0.0

description:
description: |
An optional description of the column.

type: string
default: ''

unit:
description:
An optional unit for the column.

allOf:
- $ref: ../unit/unit-1.0.0

meta:
description:
Additional free-form metadata about the column.

type: object
default: {}

(continues on next page)

6.1. Core 53

ASDF Standard, Release 1.6.0

(continued from previous page)

required: [name, data]
additionalProperties: false
...

6.1.6 core/constant-1.0.0

Specify that a value is a constant.

Description

Used as a utility to indicate that value is a literal constant.

Outline

Schema Definitions

Original Schema

Schema Definitions

tag:stsci.edu:asdf/core/constant-1.0.0

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/core/constant-1.0.0"
tag: "tag:stsci.edu:asdf/core/constant-1.0.0"
title: Specify that a value is a constant.
description: |
Used as a utility to indicate that value is a literal constant.

...

6.1.7 core/software-1.0.0

Describes a software package.

Description

General-purpose description of a software package.

Outline

Schema Definitions

Original Schema

Schema Definitions

This type is an object with the following properties:

name

The name of the application or library. No length restriction

author

The author (or institution) that produced the software package. No length restriction

54 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

homepage

A URI to the homepage of the software. No length restriction

version

The version of the software used. It is recommended, but not required, that this follows the (Semantic
Versioning Specification)[http://semver.org/spec/v2.0.0.html]. No length restriction

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/core/software-1.0.0"
title: |
Describes a software package.

description: |
General-purpose description of a software package.

tag: "tag:stsci.edu:asdf/core/software-1.0.0"
type: object
properties:

name:
description: |
The name of the application or library.

type: string

author:
description: |
The author (or institution) that produced the software package.

type: string

homepage:
description: |
A URI to the homepage of the software.

type: string
format: uri

version:
description: |
The version of the software used. It is recommended, but not
required, that this follows the (Semantic Versioning
Specification)[http://semver.org/spec/v2.0.0.html].

type: string

required: [name, version]
additionalProperties: true
...

6.1. Core 55

http://semver.org/spec/v2.0.0.html

ASDF Standard, Release 1.6.0

6.1.8 core/history_entry-1.0.0

An entry in the file history.

Description

A record of an operation that has been performed upon a file.

Outline

Schema Definitions

Original Schema

Schema Definitions

This type is an object with the following properties:

description

A description of the transformation performed. No length restriction

time

A timestamp for the operation, in UTC. No length restriction

software

One or more descriptions of the software that performed the operation.

This node must validate against any of the following:

– software-1.0.0

–

array No length restriction

Items in the array are restricted to the following types:

software-1.0.0

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/core/history_entry-1.0.0"
title: |
An entry in the file history.

description: |
A record of an operation that has been performed
upon a file.

tag: "tag:stsci.edu:asdf/core/history_entry-1.0.0"
type: object
properties:

description:
description: |
A description of the transformation performed.

type: string

time:
(continues on next page)

56 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

description: |
A timestamp for the operation, in UTC.

type: string
format: date-time

software:
description: |
One or more descriptions of the software that performed the
operation.

anyOf:
- $ref: "software-1.0.0"
- type: array
items:
$ref: "software-1.0.0"

required: [description]
additionalProperties: true
...

6.1.9 core/extension_metadata-1.0.0

Metadata about specific ASDF extensions that were used to create this file.

Description

Metadata about specific ASDF extensions that were used to create this file.

Outline

Schema Definitions

Original Schema

Schema Definitions

This type is an object with the following properties:

extension_class

The fully-specified name of the extension class. No length restriction

package

The name and version of the package that contains the extension.

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/core/extension_metadata-1.0.0"
title: |
Metadata about specific ASDF extensions that were used to create this file.

description: |
Metadata about specific ASDF extensions that were used to create this file.

tag: "tag:stsci.edu:asdf/core/extension_metadata-1.0.0"
(continues on next page)

6.1. Core 57

ASDF Standard, Release 1.6.0

(continued from previous page)

type: object
properties:

extension_class:
description: |
The fully-specified name of the extension class.

type: string

package:
description: |
The name and version of the package that contains the extension.

$ref: "software-1.0.0"

required: [extension_class]
...

6.1.10 core/integer-1.0.0

Arbitrary precision integer value.

Description

Represents an arbitrarily large integer value.

Outline

Schema Definitions

Examples

Original Schema

Schema Definitions

This type is an object with the following properties:

words

An array of unsigned 32-bit words representing the integer value, stored as little endian (i.e. the first word
of the array represents the least significant bits of the integer value).

sign

String indicating whether the integer value is positive or negative. No length restriction

Must match the following pattern:

^[+-]$

string

Optional string representation of the integer value. This field is only intended to improve readability for
humans, and therefore no assumptions about format should be made by ASDF readers. No length restriction

Examples

An integer value that is stored using an internal array:

58 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

!core/integer-1.0.0
sign: +
string: '1193942770599561143856918438330'
words: !core/ndarray-1.0.0
source: 0
datatype: uint32
byteorder: little
shape: [4]

The same integer value is stored using an inline array:

!core/integer-1.0.0
sign: +
string: '1193942770599561143856918438330'
words: !core/ndarray-1.0.0
data: [1103110586, 1590521629, 299257845, 15]
datatype: uint32
shape: [4]

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/core/integer-1.0.0"
title: Arbitrary precision integer value.
description: |
Represents an arbitrarily large integer value.

examples:
-
- An integer value that is stored using an internal array
- |

!core/integer-1.0.0
sign: +
string: '1193942770599561143856918438330'
words: !core/ndarray-1.0.0
source: 0
datatype: uint32
byteorder: little
shape: [4]

-
- The same integer value is stored using an inline array
- |

!core/integer-1.0.0
sign: +
string: '1193942770599561143856918438330'
words: !core/ndarray-1.0.0
data: [1103110586, 1590521629, 299257845, 15]
datatype: uint32
shape: [4]

(continues on next page)

6.1. Core 59

ASDF Standard, Release 1.6.0

(continued from previous page)

tag: "tag:stsci.edu:asdf/core/integer-1.0.0"
type: object
properties:

words:
$ref: "ndarray-1.0.0"
description: |
An array of unsigned 32-bit words representing the integer value, stored
as little endian (i.e. the first word of the array represents the least
significant bits of the integer value).

sign:
type: string
pattern: "^[+-]$"
description: |
String indicating whether the integer value is positive or negative.

string:
type: string
description: |

Optional string representation of the integer value. This field is only
intended to improve readability for humans, and therefore no assumptions
about format should be made by ASDF readers.

required: [words, sign]
...

6.1.11 core/externalarray-1.0.0

Point to an array-like object in an external file.

Description

Allow referencing of array-like objects in external files. These files can be any type of file and in any absolute or
relative location to the asdf file. Loading of these files into arrays is not handled by asdf.

Outline

Schema Definitions

Examples

Original Schema

Schema Definitions

This type is an object with the following properties:

fileuri No length restriction

target

This node must validate against any of the following:

–

integer

–

string No length restriction

60 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

datatype No length restriction

shape No length restriction Items in the array must be any of the following types:

–

integer

Minimum value: 0

Examples

Example external reference:

!core/externalarray-1.0.0
datatype: int16
fileuri: aia.lev1_euv_12s.2017-09-06T120001Z.94.image_lev1.fits
shape: [4096, 4096]
target: 1

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/core/externalarray-1.0.0"
tag: "tag:stsci.edu:asdf/core/externalarray-1.0.0"
title: Point to an array-like object in an external file.
description: |
Allow referencing of array-like objects in external files. These files can be
any type of file and in any absolute or relative location to the asdf file.
Loading of these files into arrays is not handled by asdf.

examples:
-
- Example external reference
- |
!core/externalarray-1.0.0
datatype: int16
fileuri: aia.lev1_euv_12s.2017-09-06T120001Z.94.image_lev1.fits
shape: [4096, 4096]
target: 1

type: object
properties:

fileuri:
type: string

target:
anyOf:
- type: integer
- type: string

datatype:
type: string

shape:
type: array
items:
anyOf:
- type: integer

(continues on next page)

6.1. Core 61

ASDF Standard, Release 1.6.0

(continued from previous page)

minimum: 0

required: [fileuri, target, datatype, shape]
additionalProperties: true
...

6.1.12 core/subclass_metadata-1.0.0

Metadata on a serialized subclass of an ASDF-enabled type.

Description

Identifies the specific subclass that was serialized, to enable ASDF readers to correctly deserialize the object.

Outline

Schema Definitions

Original Schema

Schema Definitions

This type is an object with the following properties:

name

The name of the subclass that represents this object when deserialized. No length restriction

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/core/subclass_metadata-1.0.0"
title: |
Metadata on a serialized subclass of an ASDF-enabled type.

description: |
Identifies the specific subclass that was serialized,
to enable ASDF readers to correctly deserialize the object.

tag: "tag:stsci.edu:asdf/core/subclass_metadata-1.0.0"
type: object
properties:

name:
description: |
The name of the subclass that represents this object
when deserialized.

type: string

required: [name]
...

62 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

6.2 FITS

The fits module contains schema that support backward compatibility with FITS. It can safely be ignored by most
ASDF implementations.

6.2.1 fits/fits-1.0.0

A FITS file inside of an ASDF file.

Description

This schema is useful for distributing ASDF files that can automatically be converted to FITS files by specifying the
exact content of the resulting FITS file.

Not all kinds of data in FITS are directly representable in ASDF. For example, applying an offset and scale to the
data using the BZERO and BSCALE keywords. In these cases, it will not be possible to store the data in the native
format from FITS and also be accessible in its proper form in the ASDF file.

Only image and binary table extensions are supported.

Outline

Schema Definitions

Examples

Original Schema

Schema Definitions

array No length restriction

Items in the array are restricted to the following types:

This type is an object with the following properties:

header

A list of the keyword/value/comment triples from the header, in the order they appear in the FITS file. No
length restriction

Items in the array are restricted to the following types:

array

Maximum length: 3

The first 3 items in the list must be the following types:

string

Maximum length: 8

Must match the following pattern:

[A-Z0-9]*

This node must validate against any of the following:

string

Maximum length: 60

6.2. FITS 63

ASDF Standard, Release 1.6.0

number

boolean

string

Maximum length: 60

data

The data part of the HDU.

This node must validate against any of the following:

– ../core/ndarray-1.0.0

– ../core/table-1.0.0

–

null

Examples

A simple FITS file with a primary header and two extensions:

!fits/fits-1.0.0
- header:
- [SIMPLE, true, conforms to FITS standard]
- [BITPIX, 8, array data type]
- [NAXIS, 0, number of array dimensions]
- [EXTEND, true]
- []
- ['', Top Level MIRI Metadata]
- []
- [DATE, '2013-08-30T10:49:55.070373', The date this file was created (UTC)]
- [FILENAME, MiriDarkReferenceModel_test.fits, The name of the file]
- [TELESCOP, JWST, The telescope used to acquire the data]
- []
- ['', Information about the observation]
- []
- [DATE-OBS, '2013-08-30T10:49:55.000000', The date the observation was made (UTC)]

- data: !core/ndarray-1.0.0
datatype: float32
shape: [2, 3, 3, 4]
source: 0
byteorder: big

header:
- [XTENSION, IMAGE, Image extension]
- [BITPIX, -32, array data type]
- [NAXIS, 4, number of array dimensions]
- [NAXIS1, 4]
- [NAXIS2, 3]
- [NAXIS3, 3]
- [NAXIS4, 2]
- [PCOUNT, 0, number of parameters]

(continues on next page)

64 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

- [GCOUNT, 1, number of groups]
- [EXTNAME, SCI, extension name]
- [BUNIT, DN, Units of the data array]

- data: !core/ndarray-1.0.0
datatype: float32
shape: [2, 3, 3, 4]
source: 1
byteorder: big

header:
- [XTENSION, IMAGE, Image extension]
- [BITPIX, -32, array data type]
- [NAXIS, 4, number of array dimensions]
- [NAXIS1, 4]
- [NAXIS2, 3]
- [NAXIS3, 3]
- [NAXIS4, 2]
- [PCOUNT, 0, number of parameters]
- [GCOUNT, 1, number of groups]
- [EXTNAME, ERR, extension name]
- [BUNIT, DN, Units of the error array]

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/fits/fits-1.0.0"
title: >
A FITS file inside of an ASDF file.

description: |
This schema is useful for distributing ASDF files that can
automatically be converted to FITS files by specifying the exact
content of the resulting FITS file.

Not all kinds of data in FITS are directly representable in ASDF.
For example, applying an offset and scale to the data using the
`BZERO` and `BSCALE` keywords. In these cases, it will not be
possible to store the data in the native format from FITS and also
be accessible in its proper form in the ASDF file.

Only image and binary table extensions are supported.

examples:
-
- A simple FITS file with a primary header and two extensions
- |

!fits/fits-1.0.0
- header:
- [SIMPLE, true, conforms to FITS standard]
- [BITPIX, 8, array data type]
- [NAXIS, 0, number of array dimensions]
- [EXTEND, true]

(continues on next page)

6.2. FITS 65

ASDF Standard, Release 1.6.0

(continued from previous page)

- []
- ['', Top Level MIRI Metadata]
- []
- [DATE, '2013-08-30T10:49:55.070373', The date this file was created (UTC)]
- [FILENAME, MiriDarkReferenceModel_test.fits, The name of the file]
- [TELESCOP, JWST, The telescope used to acquire the data]
- []
- ['', Information about the observation]
- []
- [DATE-OBS, '2013-08-30T10:49:55.000000', The date the observation was made␣

,→(UTC)]
- data: !core/ndarray-1.0.0

datatype: float32
shape: [2, 3, 3, 4]
source: 0
byteorder: big

header:
- [XTENSION, IMAGE, Image extension]
- [BITPIX, -32, array data type]
- [NAXIS, 4, number of array dimensions]
- [NAXIS1, 4]
- [NAXIS2, 3]
- [NAXIS3, 3]
- [NAXIS4, 2]
- [PCOUNT, 0, number of parameters]
- [GCOUNT, 1, number of groups]
- [EXTNAME, SCI, extension name]
- [BUNIT, DN, Units of the data array]

- data: !core/ndarray-1.0.0
datatype: float32
shape: [2, 3, 3, 4]
source: 1
byteorder: big

header:
- [XTENSION, IMAGE, Image extension]
- [BITPIX, -32, array data type]
- [NAXIS, 4, number of array dimensions]
- [NAXIS1, 4]
- [NAXIS2, 3]
- [NAXIS3, 3]
- [NAXIS4, 2]
- [PCOUNT, 0, number of parameters]
- [GCOUNT, 1, number of groups]
- [EXTNAME, ERR, extension name]
- [BUNIT, DN, Units of the error array]

tag: "tag:stsci.edu:asdf/fits/fits-1.0.0"
type: array
items:
description: >
Each item represents a single header/data unit (HDU).

type: object
(continues on next page)

66 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

properties:
header:
description: >

A list of the keyword/value/comment triples from the header,
in the order they appear in the FITS file.

type: array
items:
type: array
minItems: 0
maxItems: 3
items:
- description: "The keyword."
type: string
maxLength: 8
pattern: "[A-Z0-9]*"

- description: "The value."
anyOf:
- type: string
maxLength: 60

- type: number
- type: boolean

- description: "The comment."
type: string
maxLength: 60

data:
description: "The data part of the HDU."
anyOf:
- $ref: "../core/ndarray-1.0.0"
- $ref: "../core/table-1.0.0"
- type: "null"

default: null
required: [header]
additionalProperties: false

...

6.3 Unit

The unit module contains schema to support the units of physical quantities.

6.3.1 unit/unit-1.0.0

Physical unit.

Description

This represents a physical unit, in VOUnit syntax, Version 1.0 (http://www.ivoa.net/documents/VOUnits/index.html).
Where units are not explicitly tagged, they are assumed to be in VOUnit syntax.

Outline

Schema Definitions

6.3. Unit 67

http://www.ivoa.net/documents/VOUnits/index.html

ASDF Standard, Release 1.6.0

Examples

Original Schema

Schema Definitions

This node must validate against any of the following:

• tag:stsci.edu:asdf/unit/unit-1.0.0

• This node has no type definition (unrestricted)

Examples

Example unit:

!unit/unit-1.0.0 "2.1798721 10-18kg m2 s-2"

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/unit/unit-1.0.0"
title: Physical unit.
description: >
This represents a physical unit, in [VOUnit syntax, Version
1.0](http://www.ivoa.net/documents/VOUnits/index.html).

Where units are not explicitly tagged, they are assumed to be
in VOUnit syntax.

examples:
-
- Example unit
- |
!unit/unit-1.0.0 "2.1798721 10-18kg m2 s-2"

anyOf:
- tag: "tag:stsci.edu:asdf/unit/unit-1.0.0"
- {}

type: string
pattern: "[\x00-\x7f]*"
...

6.3.2 unit/defunit-1.0.0

Define a new physical unit.

Description

Defines a new unit. It can be used to either:

• Define a new base unit.

• Create a new unit name that is a equivalent to a given unit.

The new unit must be defined before any unit tags that use it.

68 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

Outline

Schema Definitions

Original Schema

Schema Definitions

This type is an object with the following properties:

name

The name of the new unit. No length restriction

Must match the following pattern:

[A-Za-z_][A-Za-z0-9_]+

unit

The unit that the new name is equivalent to. It is optional, and if not provided, or null, this defunit defines
a new base unit.

This node must validate against any of the following:

– unit-1.0.0

–

null

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/unit/defunit-1.0.0"
title: Define a new physical unit.
description: |
Defines a new unit. It can be used to either:

- Define a new base unit.

- Create a new unit name that is a equivalent to a given unit.

The new unit must be defined before any unit tags that use it.

tag: "tag:stsci.edu:asdf/unit/defunit-1.0.0"
type: object
properties:

name:
description: The name of the new unit.
type: string
pattern: "[A-Za-z_][A-Za-z0-9_]+"

unit:
description: |
The unit that the new name is equivalent to. It is optional,
and if not provided, or ``null``, this ``defunit`` defines a new
base unit.

(continues on next page)

6.3. Unit 69

ASDF Standard, Release 1.6.0

(continued from previous page)

anyOf:
- $ref: "unit-1.0.0"
- type: "null"

required: [name]
...

6.3.3 unit/quantity-1.1.0

Represents a Quantity object from astropy

Description

A Quantity object represents a value that has some unit associated with the number.

Outline

Schema Definitions

Examples

Original Schema

Schema Definitions

This type is an object with the following properties:

value

A vector of one or more values

This node must validate against any of the following:

–

number

– ../core/ndarray-1.0.0

unit

The unit corresponding to the values

Examples

A quantity consisting of a scalar value and unit:

!unit/quantity-1.1.0
value: 3.14159
unit: km

A quantity consisting of a single value in an array:

!unit/quantity-1.1.0
value: !core/ndarray-1.0.0 [2.71828]
unit: A

A quantity with an array of values:

70 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

!unit/quantity-1.1.0
value: !core/ndarray-1.0.0 [1, 2, 3, 4]
unit: s

A quantity with an n-dimensional array of values:

!unit/quantity-1.1.0
value: !core/ndarray-1.0.0
datatype: float64
data: [[1, 2, 3],

[4, 5, 6]]
unit: pc

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/unit/quantity-1.1.0"
tag: "tag:stsci.edu:asdf/unit/quantity-1.1.0"

title: >
Represents a Quantity object from astropy

description: |
A Quantity object represents a value that has some unit
associated with the number.

examples:
-
- A quantity consisting of a scalar value and unit
- |

!unit/quantity-1.1.0
value: 3.14159
unit: km

-
- A quantity consisting of a single value in an array
- |

!unit/quantity-1.1.0
value: !core/ndarray-1.0.0 [2.71828]
unit: A

-
- A quantity with an array of values
- |

!unit/quantity-1.1.0
value: !core/ndarray-1.0.0 [1, 2, 3, 4]
unit: s

-
- A quantity with an n-dimensional array of values
- |

!unit/quantity-1.1.0
(continues on next page)

6.3. Unit 71

ASDF Standard, Release 1.6.0

(continued from previous page)

value: !core/ndarray-1.0.0
datatype: float64
data: [[1, 2, 3],

[4, 5, 6]]
unit: pc

type: object
properties:

value:
description: |
A vector of one or more values

anyOf:
- type: number
- $ref: "../core/ndarray-1.0.0"

unit:
description: |
The unit corresponding to the values

$ref: unit-1.0.0
required: [value, unit]
...

6.4 Time

The time module contains schema to support representing instances in time and time deltas.

6.4.1 time/time-1.1.0

Represents an instance in time.

Description

A “time” is a single instant in time. It may explicitly specify the way time is represented (the “format”) and the
“scale” which specifies the offset and scaling relation of the unit of time.

Specific emphasis is placed on supporting time scales (e.g. UTC, TAI, UT1, TDB) and time representations (e.g.
JD, MJD, ISO 8601) that are used in astronomy and required to calculate, e.g., sidereal times and barycentric
corrections.

Times may be represented as one of the following:

• an object, with explicit value, and optional format, scale and location.

• a string, in which case the format is guessed from across the unambiguous options (iso, byear, jyear,
yday), and the scale is hardcoded to UTC.

In either case, a single time tag may be used to represent an n-dimensional array of times, using either an ndarray
tag or inline as (possibly nested) YAML lists. If YAML lists, the same format must be used for all time values.

The precision of the numeric formats should only be assumed to be as good as an IEEE-754 double precision
(float64) value. If higher-precision is required, the iso or yday format should be used.

Outline

Schema Definitions

72 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

Examples

Internal Definitions

Original Schema

Schema Definitions

This node must validate against any of the following:

• #/definitions/string_formats

• #/definitions/array_of_strings

• ../core/ndarray-1.0.0#/anyOf/1

•

This type is an object with the following properties:

value

The value(s) of the time.

This node must validate against any of the following:

#/definitions/string_formats

#/definitions/array_of_strings

../core/ndarray-1.0.0

number

format

The format of the time.

If not provided, the the format should be guessed from the string from among the following unam-
biguous options: iso, byear, jyear and yday.

The supported formats are:

iso: ISO 8601 compliant date-time format YYYY-MM- DDTHH:MM:SS.sss.... For example,
2000-01-01 00:00:00.000 is midnight on January 1, #. The T separating the date from the
time section is optional.

yday: Year, day-of-year and time as YYYY:DOY:HH:MM:SS.sss.... The day-of-year (DOY) goes
from 001 to 365 (366 in leap years). For example, 2000:001:00:00:00.000 is midnight on
January 1, 2000.

byear: Besselian Epoch year, eg. B1950.0. The B is optional if the byear format is explicitly
specified.

jyear: Julian Epoch year, eg. J2000.0. The J is optional if the jyear format is explicitly specified.

decimalyear: Time as a decimal year, with integer values corresponding to midnight of the first
day of each year. For example 2000.5 corresponds to the ISO time 2000-07-02 00:00:00.

jd: Julian Date time format. This represents the number of days since the beginning of the Julian
Period. For example, 2451544.5 in jd is midnight on January 1, 2000.

mjd: Modified Julian Date time format. This represents the number of days since midnight on
November 17, 1858. For example, 51544.0 in MJD is midnight on January 1, 2000.

6.4. Time 73

ASDF Standard, Release 1.6.0

gps: GPS time: seconds from 1980-01-06 00:00:00 UTC For example, 630720013.0 is midnight
on January 1, 2000.

unix: Unix time: seconds from 1970-01-01 00:00:00 UTC. For example, 946684800.0 in Unix
time is midnight on January 1, 2000. [TODO: Astropy’s definition of UNIX time doesn’t match
POSIX’s here. What should we do for the purposes of ASDF?]

This node has no type definition (unrestricted)

scale

The time scale (or time standard) is a specification for measuring time: either the rate at which time
passes; or points in time; or both. See also [3] and [4].

These scales are defined in detail in SOFA Time Scale and Calendar Tools
(http://www.iausofa.org/sofa_ts_c.pdf).

The supported time scales are:

utc: Coordinated Universal Time (UTC). This is the default time scale, except for gps, unix.

tai: International Atomic Time (TAI).

tcb: Barycentric Coordinate Time (TCB).

tcg: Geocentric Coordinate Time (TCG).

tdb: Barycentric Dynamical Time (TDB).

tt: Terrestrial Time (TT).

ut1: Universal Time (UT1).

This node has no type definition (unrestricted)

location

Specifies the observer location for scales that are sensitive to observer location, currently only tdb. May
be specified either with geocentric coordinates (X, Y, Z) with an optional unit or geodetic coordinates:

long: longitude in degrees

lat: in degrees

h: optional height

This type is an object with the following properties:

x

y

z

Examples

Example ISO time:

!time/time-1.1.0 "2000-12-31T13:05:27.737"

Example year, day-of-year and time format time:

!time/time-1.1.0 "2001:003:04:05:06.789"

Example Besselian Epoch time:

74 Chapter 6. ASDF Schema Definitions

http://www.iausofa.org/sofa_ts_c.pdf

ASDF Standard, Release 1.6.0

!time/time-1.1.0 B2000.0

Example Besselian Epoch time, equivalent to above:

!time/time-1.1.0
value: 2000.0
format: byear

Example list of times:

!time/time-1.1.0
["2000-12-31T13:05:27.737", "2000-12-31T13:06:38.444"]

Example of an array of times:

!time/time-1.1.0
value: !core/ndarray-1.0.0
data: [2000, 2001]
datatype: float64

format: jyear

Example with a location:

!time/time-1.1.0
value: 2000.0
format: jyear
scale: tdb
location:
x: !unit/quantity-1.1.0
value: 6378100
unit: !unit/unit-1.0.0 m

y: !unit/quantity-1.1.0
value: 0
unit: !unit/unit-1.0.0 m

z: !unit/quantity-1.1.0
value: 0
unit: !unit/unit-1.0.0 m

Internal Definitions

iso_time No length restriction

Must match the following pattern:

[0-9]{4}-(0[1-9])|(1[0-2])-(0[1-9])|([1-2][0-9])|(3[0-1])[T]([0-1][0-9])|(2[0-4]):[0-5][0-
,→9]:[0-5][0-9](.[0-9]+)?

byear No length restriction

Must match the following pattern:

B[0-9]+(.[0-9]+)?

jyear No length restriction

Must match the following pattern:

6.4. Time 75

ASDF Standard, Release 1.6.0

J[0-9]+(.[0-9]+)?

yday No length restriction

Must match the following pattern:

[0-9]{4}:(00[1-9])|(0[1-9][0-9])|([1-2][0-9][0-9])|(3[0-5][0-9])|(36[0-5]):([0-1][0-9])|([0-
,→1][0-9])|(2[0-4]):[0-5][0-9]:[0-5][0-9](.[0-9]+)?

string_formats

This node must validate against any of the following:

• #/definitions/iso_time

• #/definitions/byear

• #/definitions/jyear

• #/definitions/yday

array_of_strings No length restriction Items in the array must be any of the following types:

• #/definitions/array_of_strings

• #/definitions/string_formats

Original Schema

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/time/time-1.1.0"
tag: "tag:stsci.edu:asdf/time/time-1.1.0"
title: Represents an instance in time.
description: |
A "time" is a single instant in time. It may explicitly specify the
way time is represented (the "format") and the "scale" which
specifies the offset and scaling relation of the unit of time.

Specific emphasis is placed on supporting time scales (e.g. UTC,
TAI, UT1, TDB) and time representations (e.g. JD, MJD, ISO 8601)
that are used in astronomy and required to calculate, e.g., sidereal
times and barycentric corrections.

Times may be represented as one of the following:

- an object, with explicit `value`, and optional `format`, `scale`
and `location`.

- a string, in which case the format is guessed from across
the unambiguous options (`iso`, `byear`, `jyear`, `yday`), and the
scale is hardcoded to `UTC`.

In either case, a single time tag may be used to represent an
n-dimensional array of times, using either an `ndarray` tag or
inline as (possibly nested) YAML lists. If YAML lists, the same
format must be used for all time values.

(continues on next page)

76 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

The precision of the numeric formats should only be assumed to be as
good as an IEEE-754 double precision (float64) value. If
higher-precision is required, the `iso` or `yday` format should be
used.

examples:
-
- Example ISO time
- |

!time/time-1.1.0 "2000-12-31T13:05:27.737"

-
- Example year, day-of-year and time format time
- |

!time/time-1.1.0 "2001:003:04:05:06.789"

-
- Example Besselian Epoch time
- |

!time/time-1.1.0 B2000.0

-
- Example Besselian Epoch time, equivalent to above
- |

!time/time-1.1.0
value: 2000.0
format: byear

-
- Example list of times
- |

!time/time-1.1.0
["2000-12-31T13:05:27.737", "2000-12-31T13:06:38.444"]

-
- Example of an array of times
- |

!time/time-1.1.0
value: !core/ndarray-1.0.0

data: [2000, 2001]
datatype: float64

format: jyear

-
- Example with a location
- |

!time/time-1.1.0
value: 2000.0
format: jyear
scale: tdb
location:

(continues on next page)

6.4. Time 77

ASDF Standard, Release 1.6.0

(continued from previous page)

x: !unit/quantity-1.1.0
value: 6378100
unit: !unit/unit-1.0.0 m

y: !unit/quantity-1.1.0
value: 0
unit: !unit/unit-1.0.0 m

z: !unit/quantity-1.1.0
value: 0
unit: !unit/unit-1.0.0 m

definitions:
iso_time:
type: string
pattern: "[0-9]{4}-(0[1-9])|(1[0-2])-(0[1-9])|([1-2][0-9])|(3[0-1])[T]([0-1][0-9])|(2[0-

,→4]):[0-5][0-9]:[0-5][0-9](.[0-9]+)?"

byear:
type: string
pattern: "B[0-9]+(.[0-9]+)?"

jyear:
type: string
pattern: "J[0-9]+(.[0-9]+)?"

yday:
type: string
pattern: "[0-9]{4}:(00[1-9])|(0[1-9][0-9])|([1-2][0-9][0-9])|(3[0-5][0-9])|(36[0-5]):([0-

,→1][0-9])|([0-1][0-9])|(2[0-4]):[0-5][0-9]:[0-5][0-9](.[0-9]+)?"

string_formats:
anyOf:
- $ref: "#/definitions/iso_time"
- $ref: "#/definitions/byear"
- $ref: "#/definitions/jyear"
- $ref: "#/definitions/yday"

array_of_strings:
type: array
items:
anyOf:
- $ref: "#/definitions/array_of_strings"
- $ref: "#/definitions/string_formats"

anyOf:
- $ref: "#/definitions/string_formats"

- $ref: "#/definitions/array_of_strings"

- $ref: "../core/ndarray-1.0.0#/anyOf/1"

- type: object
properties:

(continues on next page)

78 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

value:
description: |
The value(s) of the time.

anyOf:
- $ref: "#/definitions/string_formats"
- $ref: "#/definitions/array_of_strings"
- $ref: "../core/ndarray-1.0.0"
- type: number

format:
description: |
The format of the time.

If not provided, the the format should be guessed from the
string from among the following unambiguous options:
`iso`, `byear`, `jyear` and `yday`.

The supported formats are:

- `iso`: ISO 8601 compliant date-time format
`YYYY-MM-DDTHH:MM:SS.sss...`. For example,
`2000-01-01 00:00:00.000` is midnight on January 1,
2000. The `T` separating the date from the time
section is optional.

- `yday`: Year, day-of-year and time as
`YYYY:DOY:HH:MM:SS.sss...`. The day-of-year (DOY) goes
from 001 to 365 (366 in leap years). For example,
`2000:001:00:00:00.000` is midnight on January 1,
2000.

- `byear`: Besselian Epoch year, eg. `B1950.0`. The `B`
is optional if the `byear` format is explicitly
specified.

- `jyear`: Julian Epoch year, eg. `J2000.0`. The `J` is
optional if the `jyear` format is explicitly
specified.

- `decimalyear`: Time as a decimal year, with integer
values corresponding to midnight of the first day of
each year. For example 2000.5 corresponds to the ISO
time `2000-07-02 00:00:00`.

- `jd`: Julian Date time format. This represents the
number of days since the beginning of the Julian
Period. For example, 2451544.5 in `jd` is midnight on
January 1, 2000.

- `mjd`: Modified Julian Date time format. This
represents the number of days since midnight on

(continues on next page)

6.4. Time 79

ASDF Standard, Release 1.6.0

(continued from previous page)

November 17, 1858. For example, 51544.0 in MJD is
midnight on January 1, 2000.

- `gps`: GPS time: seconds from 1980-01-06 00:00:00 UTC
For example, 630720013.0 is midnight on January 1,
2000.

- `unix`: Unix time: seconds from 1970-01-01 00:00:00
UTC. For example, 946684800.0 in Unix time is midnight
on January 1, 2000. [TODO: Astropy's definition of
UNIX time doesn't match POSIX's here. What should we
do for the purposes of ASDF?]

enum:
- iso
- yday
- byear
- jyear
- decimalyear
- jd
- mjd
- gps
- unix
- cxcsec

scale:
description: |
The time scale (or time standard) is a specification for
measuring time: either the rate at which time passes; or
points in time; or both. See also [3] and [4].

These scales are defined in detail in [SOFA Time Scale and
Calendar Tools](http://www.iausofa.org/sofa_ts_c.pdf).

The supported time scales are:

- `utc`: Coordinated Universal Time (UTC). This is the
default time scale, except for `gps`, `unix`.

- `tai`: International Atomic Time (TAI).

- `tcb`: Barycentric Coordinate Time (TCB).

- `tcg`: Geocentric Coordinate Time (TCG).

- `tdb`: Barycentric Dynamical Time (TDB).

- `tt`: Terrestrial Time (TT).

- `ut1`: Universal Time (UT1).

enum:
(continues on next page)

80 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

- utc
- tai
- tcb
- tcg
- tdb
- tt
- ut1

location:
description: |
Specifies the observer location for scales that are
sensitive to observer location, currently only `tdb`. May
be specified either with geocentric coordinates (X, Y, Z)
with an optional unit or geodetic coordinates:
- `long`: longitude in degrees
- `lat`: in degrees
- `h`: optional height

type: object
properties:
x:
$ref: "../unit/quantity-1.1.0"

y:
$ref: "../unit/quantity-1.1.0"

z:
$ref: "../unit/quantity-1.1.0"

required: [x, y, z]

required: [value]
...

The ASDF Standard also defines two meta-schemas that are used for validating the ASDF schemas themselves.
These schemas are useful references when creating custom schemas (see Designing a new tag and schema (page 23)).

6.5 YAML Schema

YAML Schema (page 81) is a small extension to JSON Schema Draft 4 (http://json-schema.org/draft-
04/json-schema-validation.html) that adds some features specific to YAML. Understanding JSON Schema
(http://spacetelescope.github.io/understanding-json-schema/) provides a good resource for understanding how
to use JSON Schema, and further resources are available at json-schema.org (http://json-schema.org). A working
understanding of JSON Schema is assumed for this section, which only describes what makes YAML Schema
different from JSON Schema.

Writing a new schema is described in Designing a new tag and schema (page 23).

Note: The YAML Schema currently does not require either the id or tag keywords. The id keyword is not
included in the YAML Schema since it is actually inherited from the base JSON Schema standard. However, it
may become mandatory in a future version of the YAML Standard. The tag keyword may also eventually become
mandatory, although the motivation for this is somewhat weaker.

6.5. YAML Schema 81

http://json-schema.org/draft-04/json-schema-validation.html
http://spacetelescope.github.io/understanding-json-schema/
http://json-schema.org

ASDF Standard, Release 1.6.0

YAML Schema

Description

A metaschema extending JSON Schema’s metaschema to add support for some YAML-specific constructions.

Outline

Schema Definitions

Internal Definitions

Original Schema

Schema Definitions

This node must validate against all of the following:

• http://json-schema.org/draft-04/schema

•

This type is an object with the following properties:

tag

A fully-qualified YAML tag name that should be associated with the object type returned by the YAML
parser; for example, the object must be an instance of the class registered with the parser to create
instances of objects with this tag. Implementation of this validator is optional and depends on details
of the YAML parser.

Minimum length: 6

propertyOrder

Specifies the default order of the properties when writing out. Any keys not listed in propertyOrder
will be in arbitrary order at the end. This field applies only to nodes with object type. No length
restriction

Items in the array are restricted to the following types:

string No length restriction

flowStyle

Specifies the default serialization style to use for an array or object. YAML supports multiple styles for
arrays/sequences and objects/maps, called “block style” and “flow style”. For example:

Block style: !!map
Clark : Evans
Ingy : döt Net
Oren : Ben-Kiki

Flow style: !!map { Clark: Evans, Ingy: döt Net, Oren: Ben-Kiki }

This property gives a hint to the tool outputting the YAML which style to use. If not provided, the
library is free to use whatever heuristics it wishes to determine the output style. This property does
not enforce any particular style on YAML being parsed. No length restriction

Only the following values are valid for this node:

block

flow

82 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

style

Specifies the default serialization style to use for a string. YAML supports multiple styles for strings:

Inline style: "First line\nSecond line"

Literal style: |
First line
Second line

Folded style: >
First
line

Second
line

This property gives a hint to the tool outputting the YAML which style to use. If not provided, the
library is free to use whatever heuristics it wishes to determine the output style. This property does
not enforce any particular style on YAML being parsed. No length restriction

Only the following values are valid for this node:

inline

literal

folded

examples

A list of examples to help document the schema. Each pair is a prose description followed by a string
containing YAML content. For example:

examples:
-
- Complex number: 1 real, -1 imaginary
- "!complex 1-1j"
type: array
items:

No length restriction

Items in the array are restricted to the following types:

array No length restriction

The first 2 items in the list must be the following types:

string No length restriction This node must validate against any of the following:

·

string No length restriction

·

object

additionalItems

This node must validate against any of the following:

6.5. YAML Schema 83

ASDF Standard, Release 1.6.0

boolean

#

items

This node must validate against any of the following:

#

#/definitions/schemaArray

additionalProperties

This node must validate against any of the following:

boolean

#

definitions

object

properties

object

patternProperties

object

dependencies

object

allOf

anyOf

oneOf

not

Internal Definitions

schemaArray

Minimum length: 1

Items in the array are restricted to the following types:

#

Original Schema

%YAML 1.1

$schema: "http://json-schema.org/draft-04/schema"
id: "http://stsci.edu/schemas/yaml-schema/draft-01"
title:
YAML Schema

description: |
A metaschema extending JSON Schema's metaschema to add support for

(continues on next page)

84 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

some YAML-specific constructions.
allOf:
- $ref: "http://json-schema.org/draft-04/schema"
- type: object
properties:
tag:
description: |
A fully-qualified YAML tag name that should be associated
with the object type returned by the YAML parser; for
example, the object must be an instance of the class
registered with the parser to create instances of objects
with this tag. Implementation of this validator is optional
and depends on details of the YAML parser.

type: string
minLength: 6

propertyOrder:
description: |
Specifies the default order of the properties when writing
out. Any keys not listed in **propertyOrder** will be in
arbitrary order at the end. This field applies only to nodes with
object type.

type: array
items:
type: string

flowStyle:
description: |
Specifies the default serialization style to use for an
array or object. YAML supports multiple styles for
arrays/sequences and objects/maps, called "block style" and
"flow style". For example::

Block style: !!map
Clark : Evans
Ingy : döt Net
Oren : Ben-Kiki

Flow style: !!map { Clark: Evans, Ingy: döt Net, Oren: Ben-Kiki }

This property gives a hint to the tool outputting the YAML
which style to use. If not provided, the library is free to
use whatever heuristics it wishes to determine the output
style. This property does not enforce any particular style
on YAML being parsed.

type: string
enum: [block, flow]

style:
description: |
Specifies the default serialization style to use for a string.
YAML supports multiple styles for strings:

(continues on next page)

6.5. YAML Schema 85

ASDF Standard, Release 1.6.0

(continued from previous page)

```yaml
Inline style: "First line\nSecond line"

Literal style: |
First line
Second line

Folded style: >
First
line

Second
line

```

This property gives a hint to the tool outputting the YAML
which style to use. If not provided, the library is free to
use whatever heuristics it wishes to determine the output
style. This property does not enforce any particular style
on YAML being parsed.

type: string
enum: [inline, literal, folded]

examples:
description: |
A list of examples to help document the schema. Each pair
is a prose description followed by a string containing YAML
content. For example:

```yaml
examples:
-
- Complex number: 1 real, -1 imaginary
- "!complex 1-1j"
type: array
items:

```

type: array
items:
type: array
items:
- type: string
- anyOf:
- type: string
- type: object

Redefine JSON schema validators in terms of this document so that
we can check nested objects:
additionalItems:
anyOf:

(continues on next page)

86 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

- type: boolean
- $ref: "#"

items:
anyOf:
- $ref: "#"
- $ref: "#/definitions/schemaArray"

additionalProperties:
anyOf:
- type: boolean
- $ref: "#"

definitions:
type: object
additionalProperties:
$ref: "#"

properties:
type: object
additionalProperties:
$ref: "#"

patternProperties:
type: object
additionalProperties:
$ref: "#"

dependencies:
type: object
additionalProperties:
anyOf:
- $ref: "#"
- $ref: "http://json-schema.org/draft-04/schema#definitions/stringArray"

allOf:
$ref: "#/definitions/schemaArray"

anyOf:
$ref: "#/definitions/schemaArray"

oneOf:
$ref: "#/definitions/schemaArray"

not:
$ref: "#"

definitions:
schemaArray:
type: array
minItems: 1
items:
$ref: "#"

...

6.5. YAML Schema 87

ASDF Standard, Release 1.6.0

6.6 asdf-schema-1.0.0

ASDF Schema

Description

Extending YAML Schema and JSON Schema to add support for some ASDF-specific checks, related to ndarrays
(page 34).

Outline

Schema Definitions

Internal Definitions

Original Schema

Schema Definitions

This node must validate against all of the following:

• http://stsci.edu/schemas/yaml-schema/draft-01

•

This type is an object with the following properties:

max_ndim

Specifies that the corresponding ndarray is at most the given number of dimensions. If the array has
fewer dimensions, it should be logically treated as if it were “broadcast” to the expected dimensions
by adding 1’s to the front of the shape list.

Minimum value: 0

ndim

Specifies that the matching ndarray is exactly the given number of dimensions.

Minimum value: 0

datatype

Specifies the datatype of the ndarray.

By default, an array is considered “matching” if the array can be cast to the given datatype without
data loss. For exact datatype matching, set exact_datatype to true.

This node must validate against all of the following:

http://stsci.edu/schemas/asdf/core/ndarray-1.0.0#/definitions/datatype

exact_datatype

If true, the datatype must match exactly.

Default value:

False

additionalItems

This node must validate against any of the following:

boolean

88 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

#

items

This node must validate against any of the following:

#

#/definitions/schemaArray

additionalProperties

This node must validate against any of the following:

boolean

#

definitions

object

properties

object

patternProperties

object

dependencies

object

allOf

anyOf

oneOf

not

Internal Definitions

schemaArray

Minimum length: 1

Items in the array are restricted to the following types:

#

Original Schema

%YAML 1.1

$schema: "http://json-schema.org/draft-04/schema"
id: "http://stsci.edu/schemas/asdf/asdf-schema-1.0.0"
title:
ASDF Schema

description: |
Extending YAML Schema and JSON Schema to add support for some ASDF-specific
checks, related to [ndarrays](ref:core/ndarray-1.0.0).

allOf:
- $ref: "http://stsci.edu/schemas/yaml-schema/draft-01"

(continues on next page)

6.6. asdf-schema-1.0.0 89

ASDF Standard, Release 1.6.0

(continued from previous page)

- type: object
properties:
max_ndim:
description: |
Specifies that the corresponding **ndarray** is at most the
given number of dimensions. If the array has fewer
dimensions, it should be logically treated as if it were
"broadcast" to the expected dimensions by adding 1's to the
front of the shape list.

type: integer
minimum: 0

ndim:
description: |
Specifies that the matching **ndarray** is exactly the given
number of dimensions.

type: integer
minimum: 0

datatype:
description: |
Specifies the datatype of the **ndarray**.

By default, an array is considered "matching" if the array
can be cast to the given datatype without data loss. For
exact datatype matching, set `exact_datatype` to `true`.

allOf:
- $ref: "http://stsci.edu/schemas/asdf/core/ndarray-1.0.0#/definitions/datatype"

exact_datatype:
description: |
If `true`, the datatype must match exactly.

type: boolean
default: false

Redefine JSON schema validators in terms of this document so that
we can check nested objects:
additionalItems:
anyOf:
- type: boolean
- $ref: "#"

items:
anyOf:
- $ref: "#"
- $ref: "#/definitions/schemaArray"

additionalProperties:
anyOf:
- type: boolean
- $ref: "#"

definitions:
type: object
additionalProperties:

(continues on next page)

90 Chapter 6. ASDF Schema Definitions

ASDF Standard, Release 1.6.0

(continued from previous page)

$ref: "#"
properties:

type: object
additionalProperties:
$ref: "#"

patternProperties:
type: object
additionalProperties:
$ref: "#"

dependencies:
type: object
additionalProperties:
anyOf:
- $ref: "#"
- $ref: "http://json-schema.org/draft-04/schema#definitions/stringArray"

allOf:
$ref: "#/definitions/schemaArray"

anyOf:
$ref: "#/definitions/schemaArray"

oneOf:
$ref: "#/definitions/schemaArray"

not:
$ref: "#"

definitions:
schemaArray:
type: array
minItems: 1
items:
$ref: "#"

...

The following graph shows the dependencies between modules:

6.6. asdf-schema-1.0.0 91

ASDF Standard, Release 1.6.0

92 Chapter 6. ASDF Schema Definitions

CHAPTER 7

KNOWN LIMITS

The following is a catalogue of known limits in ASDF 1.6.0.

7.1 Tree

While there is no hard limit on the size of the Tree, in most practical implementations it will need to be read
entirely into main memory in order to interpret it, particularly to support forward references. This imposes a
practical limit on its size relative to the system memory on the machine. It is not recommended to store large data
sets in the tree directly, instead it should reference blocks.

7.2 Literal integer values in the Tree

For practical reasons, integer literals in the Tree must be at most 64-bits within the int64 range. In other words,
number must be no greater than 9,223,372,036,854,775,807 or no less than -9,223,372,036,854,775,806.

As of version 1.3.0 of the standard, arbitrary precision integers are supported using integer (page 58). Like all
tags, use of this type requires library support.

7.3 Blocks

The maximum size of a block header is 65536 bytes.

Since the size of the block is stored in a 64-bit unsigned integer, the largest possible block size is around 18
exabytes. It is likely that other limitations on file size, such as an operating system’s filesystem limitations, will be
met long before that.

93

ASDF Standard, Release 1.6.0

94 Chapter 7. Known limits

CHAPTER 8

CHANGES

8.1 Version 1.1.0

• domain was removed from transforms and was replaced by bounding_box. [#138]

8.2 Version 1.0.0

First pre-release.

95

ASDF Standard, Release 1.6.0

96 Chapter 8. Changes

CHAPTER 9

APPENDIX A: EMBEDDING ASDF IN FITS

While ASDF is designed to replace all of the existing use cases of FITS, there will still be cases where files need to
be produced in FITS. Even then, it would be nice to take advantage of the highly-structured nature of ASDF to
store content that can not easily be represented in FITS in a FITS file. This appendix describes a convention for
embedding ASDF content in a FITS file.

The content of the ASDF file is placed in the data portion of an extra image extension named ASDF (EXTNAME =
'ASDF'). (By convention, the datatype is unsigned 8-bit integers (BITPIX = 8) and is one-dimensional (NAXIS =
1), but this is not strictly necessary.)

Rather than including a copy of the large data arrays in the ASDF extension, the ASDF content may refer to binary
data stored in regular FITS extensions elsewhere in the same file. The convention for doing this is to set the source
property of a ndarray (page 34) object to a special string identifier for a FITS reference. These values come in two
forms:

• fits:EXTNAME,EXTVER: Where EXTNAME and EXTVER uniquely identify a FITS extension.

• fits:INDEX: Where INDEX is the zero-based index of a FITS extension.

The fits:EXTNAME,EXTVER form is preferred, since it allows for rearranging the FITS extensions in the file without
the need to update the content of the ASDF extension, and thus such rearrangements could be performed by a
non-ASDF-aware FITS library.

Such “FITS references” simply point to the binary content of the data portion of a FITS header/data unit. There is
no enforcement that the datatype of the ASDF ndarray (page 34) matches the BITPIX of the FITS extension, or
expectation that an explicit conversion would be performed if they don’t match. It is up to the writer of the file to
keep the ASDF and FITS datatype descriptions in sync.

The following is a schematic of an example FITS file with an ASDF extension. The ASDF content references the
binary data in two FITS extensions elsewhere in the file.

HDU 0:

SIMPLE = T
BITPIX = -64
NAXIS = 2
NAXIS1 = 512

(continues on next page)

97

ASDF Standard, Release 1.6.0

(continued from previous page)

NAXIS2 = 512
EXTEND = T
EXTNAME = 'SCI '
END

...data... <

HDU 1:

XTENSION= 'IMAGE '
BITPIX = -64
NAXIS = 2
NAXIS1 = 512
NAXIS2 = 512
EXTNAME = 'DQ '
END

...data... <

HDU 2:

XTENSION= 'IMAGE '
BITPIX = 8
NAXIS = 1
NAXIS1 = 361
EXTNAME = 'ASDF '
END

#ASDF 1.0.0
%YAML 1.1
%TAG ! tag:stsci.edu:asdf/
--- !core/asdf-1.0.0
model:
sci:
data: !core/ndarray-1.0.0
source: fits:SCI,1
datatype: float64
byteorder: little
shape: [512]

wcs: ...WCS info...
dq:
data: !core/ndarray-1.0.0
source: fits:DQ,1
datatype: float64
byteorder: little
shape: [512]

wcs: ...WCS info...
...

Note: This is the Advanced Scientific Data Format - if you are looking for the Adaptable Seismic Data Format, go

98 Chapter 9. Appendix A: Embedding ASDF in FITS

ASDF Standard, Release 1.6.0

here: http://seismic-data.org/

A paper, ASDF: A new data format for astronomy (https://doi.org/10.1016/j.ascom.2015.06.004) about ASDF has
been published in Astronomy and Computing:

Greenfield, P., Droettboom, M., & Bray, E. (2015). ASDF: A new data format for astronomy. Astronomy and
Computing, 12: 240-251. doi:10.1016/j.ascom.2015.06.004

99

http://seismic-data.org/
https://doi.org/10.1016/j.ascom.2015.06.004

ASDF Standard, Release 1.6.0

100 Chapter 9. Appendix A: Embedding ASDF in FITS

BIBLIOGRAPHY

[Thomas2015] Thomas, B., Jenness. T. et al. (2015). Learning from FITS: Limitations in use in modern as-
tronomical research. Astronomy and Computing, 12: 133-145. doi:10.1016/j.ascom.2015.01.009
(https://doi.org/10.1016/j.ascom.2015.01.009)

101

https://doi.org/10.1016/j.ascom.2015.01.009

	Introduction
	Implementations
	Incorporated standards

	Low-level file layout
	Header
	Comments
	Tree
	Blocks
	Block header
	Flags
	Compression
	Block content

	Block index
	Implementation recommendations

	Exploded form

	The tree in-depth
	YAML subset
	Restricted mapping keys

	Tags
	References
	Numeric literals
	Comments
	Null values

	Versioning Conventions
	Relationship of version numbers
	Handling version mismatches

	ASDF Schemas
	Schema Implementation
	$schema
	id
	tag
	Descriptive information
	References
	Naming Conventions

	Designing a new tag and schema
	Descriptive information
	The schema proper
	The complete example

	Extending an existing schema
	Default annotation

	ASDF Schema Definitions
	Core
	core/asdf-1.1.0
	core/complex-1.0.0
	core/ndarray-1.0.0
	core/table-1.0.0
	core/column-1.0.0
	core/constant-1.0.0
	core/software-1.0.0
	core/history_entry-1.0.0
	core/extension_metadata-1.0.0
	core/integer-1.0.0
	core/externalarray-1.0.0
	core/subclass_metadata-1.0.0

	FITS
	fits/fits-1.0.0

	Unit
	unit/unit-1.0.0
	unit/defunit-1.0.0
	unit/quantity-1.1.0

	Time
	time/time-1.1.0

	YAML Schema
	asdf-schema-1.0.0

	Known limits
	Tree
	Literal integer values in the Tree
	Blocks

	Changes
	Version 1.1.0
	Version 1.0.0

	Appendix A: Embedding ASDF in FITS
	Bibliography

